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The origin of a well-known relation satisfied by the Racah coefficients of SU(2) is demonstrated to be 
the associative law of multiplication of the Wigner operators of SU(2). Recognition of this simple fact 
allows the immediate generalization of this identity to the Racah coefficients of U(n). 

I. INTRODUCTION 

During a recent investigation l of the properties of 
the multiplication law for symplecton eigenpoly­
nomials,2 it was observed that a fundamental relation 
between the triangle coefficients [defined in Eq. (3) 
below] and the Racah coefficients obtained in conse­
quence of the associative law of multiplication of 
these operators. The symplecton eigenpolynomials 
are a particular example of a set of irreducible tensor 
operators 

{T a • 0: = a a-I '" -a a = 0 1 ... } (1) IX· , , " , 2, , 

with respect to SU(2), which also comprise an opera­
tor ring with the multiplication 

T~T3 = 2 (2c + l)-!F(bac)q~cT~+p, (2) 

where c~~c == Cr:'a+p denotes a Wigner coefficient of 
SU(2) and F(bac) is, in general, an invariant operator 
with respect to SU(2). Equation (2) is equivalent to 
the statement that the coupling of two tensor operators 
from the set (l) is an invariant times an irreducible 
tensor operator belonging to the set. 

The symplecton2•3 is the most elementary object 
from which one can construct operator-valued poly­
nomials which satisfy the multiplication rule (2). In 
this case, the invariant operators F(bac) are explicit 
numerical coefficients, denoted in Ref. I as the 
"triangle coefficients" : 

!l(bac) 

_[ (a+b+c+l)! J! 
= (a+b-c)!(a-b+c)!(-a+b+c)! . (3) 

Conversely, if the F(bac) are the triangle coefficients, 
then the multiplication law (2) uniquely defines the 
algebra of the symplecton. 

The associative law of multiplication of symplecton 
eigenpolynomials, 

(4) 

now leads directly to the following fundamental 
relation between triangle coefficients and Racah 
coefficients4 •5 [the calculation uses Eq. (IS) of Ref. 5]: 

!l(afc)!l(bdf) = (2f + 1) L !l(a be)!l(edc)W(a bed; ef). 

(5) 

[The labels a, b, c of Eq. (4) have been renamed in 
Eq. (5).] 

In quantum mechanics, operators are usually 
represented by the elements of matrices, and the 
associative law of multiplication always holds in 
consequence of this property for matrix multiplication. 
One is thus led into the trap of ignoring the direct 
consequences of the associativity requirement. The 
purpose of this paper is to demonstrate that several 
important relations in unitary group theory owe their 
origin to the fundamental associativity law. 

II. THE RELATION BETWEEN RACAH 
COEFFICIENTS OF SU(2) 

There immediately comes to mind a second set of 
tensor operators which satisfies a multiplication law 
of the form (2). These are the irreducible tensor 
operators yfl(J), constructed from the components 
Jk , k = 1, 2, 3, of the generators of an irreducible 
representation of SU(2) [see Eq. (5.67) of Ref. 6). 
However, application of the associativity law to these 
operators leads to a special case of Eq. (11) derived 
below. 

There is still another set of SU(2) tensor operators 
which possesses the algebraic property expressed by 
Eq. (2)-the Wigner operators of SU(2). The notion 
of a Wigner operator has proved to be extremely 
valuable in the study of the unitary groups.7-9 While 
a Wigner operator of SU(2) can be completely 
characterized by specifying its algebraic properties 
without any initial reference to Wigner coefficients, 
it is not particularly expedient, in the case of SU(2), 
to follow this course. The properties of SU(2) Wigner 
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operators can be made more concrete and understand­
able by giving the initial definition directly in terms of 
the known SU(2) Wigner coefficients. 

A Wigner operator of SU(2) is designated10 by the 
notation 

(

2a a + po), 
a +(1. 

(6) 

and is, first of all, an irreducible tensor operator of 
type T:, (1. = a, a - I, ... , -a, with respect to its 
transformation properties. Second, it is an operator 
which effects the shift p on the label j of a generic 
state vector Ijm): More precisely, it is defined by 

/2a a + po) Um) = C:;:!+P Ii + p, m + (1.). (7) 

\ a +(1. 
In particular, p may be any of the values p = a, 
a - I, ... , -a, so that there are 2a + 1 tensor opera­
tors of type T: defined by Eq. (7), i.e., one for each 
value of p. Note that because the Wigner coefficients 
are defined to be zero if the triangle conditions on 
j, a, and j + p are violated, certain irreducible 
representation (IR) spaces {Ijm)} wilI be annihilated 
by a given Wigner operatqr, i.e., each Wigner 
operator has an associated null ~pace. 

It is not our purpose here to develop the elegant 
theory of SU(2) which can be based on Wigner 
operators, since the essential details have been given 
previously.s.ll We will, however, note that the 
algebraic structure of Wigner operators is isomorphic 
to the set of irreducible operator polynomials which 
can be built on a pair of commuting symplectons, 
(a, ii) and (b, b). Thus, Wigner operators present a 
structure which is richer in details and, at the same 
time, more complex than that of the single symplecton. 

The reader will now be able to verify for himself 
that the following multiplication law is but an 
operator statement of a well-known relation5 between 
Wigner coefficients and Racah coefficients: 

\2:+ Po) f+-o) 
a + • _ : :.~c~, (c c + p + (1~ (8) 

- k up po , 

c+(1.+~ 

where W!~c == W!~~+a is a notation for an invariant 
(Racah) operator of SU(2) which has a Racah coeffi­
cient for its eigenvalue on an arbitrary IR space 

specified by j: 

W~~c(j) = [(2c + 1)(2j - 2p + l)]i 

x W(j - p - (1, b,j, a;j - p, c). (9) 

Note that, in applying Eq. (8) to an arbitrary state 
Ijm), the Racah operator gets evaluated on the shifted 
label j + p + (1 (the final state vector label). 

The notation for the Racah invariants is derived 
from the remarkable propertyI2 

lim WbaC(J') = Cbac 
ap . ap' 

j-+ oc; 
(10) 

We now observe that the product law (8) is pre­
cisely of the form (2), the extra labels p, (1 arising 
because of the extra labels specifying the particular 
(shift) properties of the tensor operators. 

We can now ask: What are the implications of the 
associativity law for Wigner operators? The result 
must have the same general appearance as Eq. (5), 
with some additional operator labels addended to the 
quantities. Furthermore, we must be careful to account 
for the fact that the W's appearing in Eq. (8) are 
invariant operators, and it makes a difference whether 
they appear to the left or right of a Wigner operator 
(but simply by a shift in the state on which the 
invariant is evaluated). 

This straightforward calculation is easily carried 
out with the following result: 

W~~~.(j) W~~f(j) 

= ~ w~~e(j - €)W:!'P,(j)[(2e + 1)(2/ + l)]! 
x W(abcd; e/). (11) 

Note the agreement in form with Eq. (5) as one reads 
across the upper labels. 

If we now use Eq. (9) to write Eq. (11) in terms of 
the usual notation for Racah coefficients, then Eq. (11) 
is just the expression of the well-known relation, Eq. 
(25) of Ref. 13. This relation was first derived by 
considering the couplings of four angular momenta. 
It is here demonstrated to be the consequence of a very 
fundamental property of Wigner operators-the associ­
ativity law. 

Observe that, in the limitj- 00, Eq. (11) reduces 
to one of the standard relations between Wigner 
coefficients and Racah coefficients. Thus we see that 
the Wigner coefficients themselves are still another 
example of numerical coefficients which satisfy a 
coupling law of the general form (5). 

III. GENERALIZATION TO V(n) 

Having uncovered a fundamental origin ofEq. (11), 
we may now easily generalize the result to the general 
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unitary group U(n). The notation for Wigner opera­
tors and Racah invariant operators has been explained 
in considerable detail elsewhere.8.9 Here we introduce 
an abbreviated notation for Gel'fand patterns and 
operator patterns. The symbols 

(12) 

designate Gel'fand patterns-the triangular set of 
labels of state vectors of a basis for an IR of U(n)­
where a, b, ... denote lR labels (row vectors of n 
elements) and r1., (J, ... denote the subgroup labels of 
the canonical Weyl branching law. Similarly, the 
symbols 

(13) 

designate the operator patterns of U(n) Wigner 
op.erators. The t1 pattern of an operator pattern is 
written simply as 

t1 (;) = t1(p), (14) 

and b + t1(p) denotes the set of IR labels obtained by 
row vector addition of the row vector b and the row 
vector t1(p). 

The product of two U(n) Wigner operators is a 
linear combination of Wigner operators, this result 
being exactly expressed as follows: 

We next work out the consequences of the associ­
ativity law for the product of three Wigner operators, 
using Eq. (IS). The derivation is quite tedious, but 
straightforward. The result is the following identity 
satisfied by the Racah coefficients of U(n) (all patterns 
in this result are operator patterns): 

t {(~) (:) e) }<m){ t) G) (:) }<m) 

~,,~. { (t·) (:) c,) }< e) 

x {(' \~( cr'») (D (:) }<m - ~<p» 

X {(:) (:k + .~(cr'») }<m) (17) 

[TO v.dCy that Eq, (17) reduces properly to Eq, 

(II), it is only necessary to identify the two notations 
for SU(2). That is, j = t(ml - m2), a = Hal - a2), 

b = t(bl - b2), c = t(ci - c2), a = a1 - t(bl + b2), 

P = PI - t(a l + a2), and CI + C2 = al + a2 + bi + / ) 1:\ ( ) b2
• It follows then that 

\: ~ (J;,( e + :(P'»)I : 1m > W:~'(j) 
x k + :(p'») (:) (~) } ~ {("., + cr, C,) (a," : \) (\ b') }<m,m,)] 

X ~ +:<P'1 (15) 

The symbol < I < ) I ) denotes a U(n) Wigner coeffic­
ient, and { ... } denotes a U(n) Racah invariant operator. 
The eigenvalue of { ... } on an arbitrary state vector 
with IR labels m is denoted by 

(16) 

and this coefficient is a U(n) Racah coefficient. 

(18) 

An identity of the general type (17) has been derived 
by other authors.14 However, we believe our derivation 
to be the first one which underscores the fundamental 
origin of this relation. [Observe also that there is no 
proliferation of the so-called "multiplicity indices" 
in Eq. (17), only operator patterns which are structural 
labels.] 

One can continue still further with the consequences 
of the associativity law. The notion ofa U(n): U(n - 1) 
projective operator has been developed in some detail 
[the matrix elements of projective operators are 
U(n): U(n - 1) reduced Wigner coefficients].8.9 In par­
ticular, the product of two such operators is given by9 
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(indices IX, fl, ... now designate operator patterns) 

[:J m =,~,[ (b + :(P'») (:)~) J 

x {(b+ ~(p'») (;) (:) }[b+ :(P'l} 
(19) 

where [ ... ] denotes the square-bracket invariant 
functions of the U(n - 1) IR labels introduced in 
Ref. 9. Once again one can determine the relation 
which is implied by the associativity law of multipli­
cation of three U(n): U(n - 1) projective operators. 
The result has the same structural form as Eq. (17) 
[Eq. (17) is required in the derivation]: 

f [ (~) (:) e) k{ t) (~) t) }m') 

{( d) (plI) (b)} = ~ 1/ a I (e) 
p'(1'b' fJ p' a 

x [(' + :'(.'1) (D (;) }m' - ~'(p)) 

X [t) (;)e \~(.'») }m')' (20) 

in which m' designates a set of U(n - 1) IR labels 
(a row vector ofn - 1 elements) and ~/(p) designates 
the (n - 1 )-element ~ pattern obtained by deleting 
the last entry from A(p). The notation [_. ·](m' ) 
designates an eigenvalue of a square-bracket invariant, 
and these coefficients relate in a definite manner9 to 
U(n - 1) Racah coefficients. 

It was conjectured in Ref. 9 that there exists a 
definite limiting relation between Racah coefficients 
and square-bracket coefficients. If we introduce the 
more explicit notation 

then this conjectured relation is the property 

m.~~-m ( (:) (;) (!) }(m.) 

= [e) (:) (!) }m._,) (23) 

In SU(2), this equation is just the expression of 
property (10). Equation (23) has also been demon­
strated to be valid for a large class of nontrivial 
cases. 9 Equations (17) and (20) support, but do not 
prove, the general validity of Eq. (23), in that Eq. (20) 
is an immediate consequence of Eq. (17) if property 
(23) holds. 

Indeed, if Eq. (23) is valid generally [for all U(n»), 
then an immediate consequence of it and the explicit 
expression9 relating the square-bracket coefficients to 
U(n - 1) Racah coefficients is that, under the succes­
sive limits m rtn -.. - 00, m n-1n -.. - 00, .•. , m 2n -.. 

- 00, a Racah coefficient limits to a Wigner coeffi­
cient: 

(t) (:) e) }(m.) ~ < (:)1 (:) 1(;) (241 

Taking this limit of Eq. (17), we then arrive back at 
the matrix element expression of the product law (15). 
Thus, the compatibility of the limit properties (23) 
and (24) with Eqs. (15), (17), and (20) has been 
demonstrated. 

We remark that the identity (17) also assures the 
validity of the associative law of multiplication for 
the extended U(n): U(n - 1) projective operators 
introduced in Ref. 9. 

A general proof of Eq. (23) would be quite impor­
tant because from it one can establish the limit 
properties9 of U(n): U(n - 1) reduced Wigner coeffi­
cients which, in turn, can be used to induce uniquely 
all operator pattern assignments in the canonical 
resolution of the multiplicity problem. 

IV. CONCLUSIONS 

One of the more difficult problems encountered in 
generalizing the Racah-Wigner angular momentum 
calculus to U(n) is recognizing those features of SU(2) 
which are generalizable and those which are not, i.e., 
are particular to SU(2). This generalization is often 
made quite transparent if a general structural feature 
underlies the relation, such as the associative law of 
multiplication which underlies Eq. (II). 
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Our ultimate goal, of course, is to find those struc­
tural features of Wigner operators which uniquely 
characterize all operator patterns. A significant step 
in this direction was made in Ref. 9. 

The contribution of this paper is not so much in 
deriving relations which U(n) Racah coefficients must 
satisfy as in ~ognizing the simple and general origin 
of such complicated appearing relations. 
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Using boundary conditions, one can eliminate the need of a transformation cutoff function in the 
pairwise point transformation method applied to the many-body problem. 

In previous workl - 3 on the many-body problem 
using the pairwise point transformation method, it 
was necessary to introduce a cutoff function into the 
transformation, such that the transformation ap­
proached the identity transformation for interparticle 
separations greater than an arbitrarily chosen cutoff 
distance.! The purpose of this article is to show that 
one need not introduce a cutoff function into the 
transformation. provided that one requires the origi­
nal wavefunction to approach the free-particle wave­
function within an arbitrarily chosen cutoff distance. 
If this distance is taken to be less than or equal to the 
interparticle separation. this requirement is essentially 
that of "pairwise additivity"; namely, after particle 
"an has interacted pairwise with particle "b," it 
must become a free particle before it can interact 
pairwise with particle "c." In essence. we show that 
one can put the cutoff into the wavefunction instead 
of the transformation. This technique could be 
useful in simplifying the calculations inherent in 

applying many-body point transforms4 to many-body 
systems. 

In the pairwise point transformation method.2 the 
system is assumed to be sufficiently dilute such that 
the Hamiltonian H can be assumed to be the sum of 
pairwise Hamiltonians Hi} , 

N 

H= !Hij • 

i.1=! 
i<j 

(1) 

We shall therefore only consider the 2-body wave­
function associated with Hi;' To illustrate the 
technique, we shall demonstrate it on the hard-core 
2-body problem. This problem was previously studied! 
using a cutoff function in the transformation, and 
the standard results were obtained. 

Our notation for equal-mass particles is that the 
Xi~ (the Ri ) are the original coordinates, the x i« (the 
r i ) are the transformed coordinates, the P i « are 
the original momenta, the Pia are the transformed 
momenta, the Xii~' X;;~, Pii~' and Pii« represent the 
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relative canonical coordinates and momenta in the 
original and transformed spaces, respectively [Xiia = 
X/a - Xia , Pita = l(Pia - Pia), ... ], thepiia represent 
the center-of-mass momentum in the transformed 
space (Piia = Pia + Pi.), Greek indices stand for the 
Cartesian coordinates 1 to 3, r = Irl, and we use 
units of Ii = 1. Under the pairwise point transforma­
tion 

X ii« = xij«[l + hlrij)], 

3 ( aXjiP aXiiP ) 
Piio = t ~ PiiP ax.. + ax .. PiiP , 

Jl-l '}a 'ia 

the original Hamiltonian 
I 

Hii = ~ ±(Pi. + P7a) + V(R;i' Pij) 
2m a=1 

is transformed into 

HL = ± (4~ P;ja + 1. ± Pijagap(rij)PiiP) 
a=1 m m P=1 

(2) 

(3) 

(4) 

+ W(rij) + V(rij' Po), (5) 
where 

(6) 

h2 3 1 a In B a In B 
W(ri i) = - ! -4 ga{J(rij) -a- -a-

m a.fJ=! XifaXifP 

1 a a In B 
- -2 -0 - g«fJ(rij) ~o' (7) 

Xi;« XiifJ 

B is the Jacobian 10xi,'/oXi«1 of the inverse transfor­
mation (r -+- R), and V(rjj, Po) is V(R ii , Pi) written 
in terms of r ii and Pii' In addition, the original 
normalized wavefunction 1pij(Rj J is related to the 
transformed normalized wavefunction 1p;j(ro ) by 

1pij(Ri;(rii» = [B(rii)]!1p;j(riJ (8) 

For convenience, we shall henceforth remove the ij 
subscript from our variables and only consider the 
relative part of the 2-body Hamiltonian, Eq. (5). 

For the hard-core problem 

VCR) = 00, R S e, 

= 0, R> e, (9) 
the transformation 

fer) = elr (10) 

removes the singular potential. Substituting Eqs. (2) 
and (10) into Eqs. (6) and (7), we obtain! 

( 
r)2 [ (_r )2]XaXfJ, 

g«fJ(r) = r + e tJ' fJ + 1 - r + e r2 

W(r) = 0, (11) 

B(r) = (_r_)2. (12) 
r+e 

The energy of the system is given by 

E = J 1p,t(r)H'1p'(r)d3r / J 'IjJ' tCr) 'IjJ'(r)d3
/" (13) 

where H' is the transformed 2-body Hamiltonian and 
'IjJ'(r) is the correct transformed wavefunction of 
the 2-body system. Substituting Eqs. (II) and (5) 
into Eq. (13), assuming 'IjJ' to be normalized and the 
center-of-mass motion to be zero, we obtain 

E = .1 J1plt(r) f P)l (_r_)20op 
m o.P=1 r + e 

+ [1 - C: JY::fJ}p{J'ljJI(r)d
3
r. (14) 

Usingp« -+ -iolox., assuming5 'IjJ'(r) = 'IjJ'(r), taking 
the system to be confined in a spherical box of radius 
M in the original space, and integrating by parts, we 
find that Eq. (14) becomes 

41T[ It 2 o'IjJ'(r)] .1I-c 
E = - - 'IjJ (r)r --

In or 0 

41TJ O'IjJ,t(r) 2 O'IjJ'(r) +- --r --dr. 
m 01' or 

(15) 

We assume the original wavefunction 'IjJ(R) to be a 
free-body wavefunction whenever the interparticle 
distance is greater than an arbitrarily chosen distance 
),', where ),' is less than the radius of the box M. This 
assumption is equivalent to the assumption of 
"pairwise additivity," if ),' is of the order of the inter­
particle separation Ro. Therefore, for the ground 
state we require6 

'IjJ(R) = K-t, for R 2 ),', (16) 

where K is a constant. From Eqs. (8) and (12) we 
obtain 

'IjJ'(r) = (1 + ;)K-t, O'IjJ'(r) = _ (~)K-!, 
ar r2 

for r 2)" (17) 

where A = A'. - e. We assume 'IjJ'(r) is well behaved 
around the origin; i.e., the contribution of the first 
term in Eq. (15), at r = 0, is zero. Therefore, if our 
system is confined to a very large box, e « M, 

[
,t 2 O'IjJ'(r)] "11-" C 

'IjJ (r)r -- ~ - - . 
or 0 K 

(18) 

Therefore, substituting Eq. (18) into Eq. (15), we 
obtain 

E = 41TC + 41Tf o'IjJ'\r) r2 o'IjJ'(rJ dr. (19) 
mK m or or 
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For the ground state we might try "P'(r) to be the 
free-body zero-momentum wavefunction in r space 
for small r, r« A, i.e., 

"P'(r) = K-~, for r« A, (20) 

where K is a constant. Therefore, we might try 

"P'(r) = K-~cp(rIA) + K-l(l + clr)[l - cp(rIA)], (21) 

where cp(rIA) == cp(~) is the cutoff function, 

cp(~) = t, ~ = 0, 

----)0 0, ~ ----)0 1, 

= 0, ~ = 1, (22) 

acp(~)/a~ is well behaved, and K and K are determined 
by the normalization of "P'(r) and the minimization of 
E. In the dilute system limit we let A » c. Substituting 
Eg. (21) into Eg. (19) and neglecting contributions 
proportional to clM and ciA, we obtain K""'" 0 and 

E ,....., 47fc/mO, (23) 

where 0 is the volume of the box containing the system, 
o = t7fM3. For the N-body problem we have 
N(N - 1)/2 pairs and thus, for large N, 

(24) 

If we had not required "P(R) to be the free-body wave­
function for R ~ A' but had tried "P'(r) = const, we 

would have obtained E = ° in Eq. (23), the correct 
2-body scattering result. Thus the requirement that 
"P(R) be a free-body wavefunction for R ~ A' gives 
us the proper energy, to first order in c, for the dilute 
many-body hard-core system taken as a sum of 2-
body systems. This requirement with A' ~ Ro is 
actually equivalent to the assumption of "pairwise 
additivity. " 

In conclusion, this method is equivalent to taking 
a cutoff function in the transformation. For many­
body systems with short-range potentials, the taking 
of the cutoff function in the transformation results in 
the need of performing very messy algebraic computa­
tions.4 The method of not using a cutoff function in 
the transformation but of requiring the wavefunction 
to satisfy certain boundary conditions could signifi­
cantly simplify these calculations. 
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1. INTRODUCTION 

A large variety of boundary value problems have 
been solved by using transform techniques based on 
the inversion of definite integrals. Thus, instead of 
seeking directly the required solution, say E.(r, 1», 
that satisfies a certain partial differential equation and 

specified boundary conditions, we seek the solution 
of the transform of the desired solution, E(v, cP), 
which satisfies an ordinary differential equation with 
the corresponding boundary conditions. When the 
transform E(v, 1» is determined, the desired solution 
is found by using the inversion formula. For simplicity, 
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we shall restrict our attention initially to cylindrical 
structures and assume the solutions are independent 
of the z axis. 

In Sec. 2 we postulate a generalized Bessel transform 
and deduce the corresponding inversion formula. 
This transform pair is shown to merge with the 
familiar Fourier integral transform when the param­
eter corresponding to the curvature of the boundary 
vanishes. It is identified with the discrete Watson 
transform when the parameter related to the curvature 
is finite, and it is shown to reduce on the Kontorowich­
Lebedev transform when the curvature parameter 
approaches infinity. 

In Sec. 3 we express the solution to the problem of 
radiation by a line source in the presence of a cylindri­
cal structure, in terms of the generalized Bessel trans­
form. The limiting forms of this solution, as the 
curvature of the diffracting structure is made to range 
from zero (a plane surface) to infinity, are then 
derived. 

This transform representation is of special interest 
for solving problems in which the local curvature of 
the diffracting structure is varying. 

2. THE GENERALIZED BESSEL TRANSFORM 
AND THE DEDUCTION OF THE CORRE­

SPONDING INVERSION FORMULA 

Consider the problem of diffraction of horizontally 
polarized waves by an infinite circular cylindrical 
structure of radius r = R. (See Fig. 1.) For simplicity 
of presentation, we shall assume initially that the 
cylindrical surface is perfectly conducting. Subse­
quently, the boundary of the cylinder is characterized 
by a finite surface impedance, and the presentation is 
generalized. Thus, problems involving diffraction of 
vertically polarized waves can be analyzed in a similar 
manner. 

We postulate that a general solution for the z­
independent electric field (z component only) may be 
expressed as 

Ez(~' ~) = L: E(v, ~)tpv(~) dv, (2.1) 

""'---r--'j------- r -

FIG. 1. Radiation by an electric line source parallel to a circular 
cylinder characterized by a surface impedance boundary. 

L' 

c 
L 

FIG. 2. Integration paths in the complex II plane. 

in which ~ = kr and k is the wavenumber. The trans­
form of the function Eza,~) is E(v, ~). The basis 
function "Pv(~) satisfies the homogeneous scalar wave 
equation Lp[tpvJ = (V/~)2tp"' where the operator Lp is 
defined by 

and the boundary condition 

in which ~R = kR. Thus, 

tp.(~) = H~l)m + RvH~2)m, (2.3a) 
where 

(2.3b) 

and H!1,2)(~) are the Hankel functions of order v of 
the first and second kind, respectively. In this paper, 
we assume an exp (iwt) time excitation. 

In order to justify the representation of the field 
Ez(~' ~) in terms of a continuous spectrum of basis 
functions, "Pva) (v varies along the entire real axis, 
path L in Fig. 2), it is necessary to demonstrate that 
the transform function E(v,~) may be derived 
uniquely from the expression for E.(~, ~). We shall 
show that this is achieved by the inverse transform 

(2.4) 
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To this end, we must show that 

E(v, 4» = 1:. [00 (fOO E(p, 4»1jJllm dp ) H~2)(~)! d~. 
4 'SR -00 ~ 

(2.5a) 

The above relationship can also be expressed as 
follows: 

b(v, p) = 1:. foo 1jJi~)H~2)(~) ~ d~, 
4 JSR " 

(2.5b) 

where 15(v, p) is the Dirac 15 function. 
For the purpose of the proof of the above theorem, 

it is necessary to show that, in the integral (2.5a), the 
order of integration can be changed. To justify this 
step, it is necessary to study certain estimations of the 
Bessel functions which can be found from their 
integral representations. A rigorous study of this 
nature has been carried out in detail by Kontorowich 
and Lebedev1 and is therefore omitted from this paper. 
Thus, on interchanging the orders of integration and 
integrating with respect to ~ and on making use of the 
Debye-Watson expansions for the Hankel functions,2.3 
we obtain, from (2.5a), 

E(v, 4» = ~ L: E(p, 4» dp Is: H~2)(~)1jJIl(~) ~~ 
= _ -4V foo E

2
(p, 4>~ [~{H~2)(~)1jJ~(~) 

-00 P - v 
(2), } - Hv (~)1jJi~) ]gR dp, (2.6a) 

for ° > 1m (v) > 1m (p). To complete the derivation, 
we express (2.6a) as 

where the path L' is shown in Fig. 2. In (2.6b) we have 
also made use of the relationships between the 
Hankel functions of positive and negative orders, and 
from (2.4) it follows that 

E( -p, 4» = -E(p, 4» exp (-iV1T). (2.7a) 

Thus, applying Cauchy's residue theorem, we reduce 
the contour integral (2.6b) to 

E(v, 4» = E(v, 4»( -i1Ti)~RW[H~2)m, H~l)(mh 
= E(v, 4». (2.7b) 

In (2.7a) we have used the value of the Wronskian, 
W, which is 

We now present the relationship between the trans­
form pair (2.1), (2.4) and the Watson transform. 
Note that in (2.1) the poles of the integrand in the 
lower half-plane [i.e., for 1m (p) < 0] are located at 
the roots of the equation 

11Rv = 0, i.e., H~~(~R) = 0, m = 1,2,3, .... 

(2.8a) 

Thus, by closing the contour in (2.1) with an infinite 
semicircle in the lower half-plane and using Cauchy's 
theorem, we can express (2.1) as 

E.(~, 4» = (21Ti) f E("m, ~~H~~WH~~(~R). (2.8b) 
m~l [oHv (~R)lov]v~vm 

Multiply both sides of (2.8b) by vnH!!)(~)/4~ and inte­
grate with respect to ~ over the range kR ~ ~ < 00. 

Using the orthogonal properties of the Hankel 
functions H!~(~), we obtain directly the expression 
for E(vn' 4» given by (2.4). Thus, the Watson trans­
form pair (2.8), (2.4) and the generalized Bessel 
transform pair (2.1), (2.4) are equivalent for finite 
and nonzero values of R. 

To show that the Bessel transform pair reduces to 
the Kontorowich-Lebedev transform for the case 
R = 0, we note that there are no roots to the equation 
Rv = ° since 

lim [Rv] -+ 1. (2.9a) 
R-+O 

Furthermore, since 

(2.9b) 

and 

H~~2)(~) = exp (±iV1T)H~1.2)m, (2.9c) 

it follows from (2.5a) that the original path of integra­
tion L in the v plane consisting of sections C1 and C2 
(see Fig. 2) may be replaced by the path consisting of 
the sections C~ and C2 .4 Finally, using Jordan's lemma, 
we may transform this path to the one L1 along the 
imaginary v axis. Thus, for R -+ 0, the appropriate 
form of the generalized Bessel transform is the 
Kontorowich-Lebedev transform l 

(2.10a) 

and 

E(v, 4» = - 1:. ('Xl E.(~, 4»Hv(~)! dv. (2.10b) 
2 Jo ~ 
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For the case R -- 00 the generalized Bessel transform 
pair can be shown to merge with the Fourier trans­
form pair. To this end, we renormalize the transform 
function E(v, ~} by defining a new transform function 
E'(v, ~) as follows: 

E(v, ~) = (v/~R)E'(v, ~)H~2)(~R)' (2.11) 

Thus, the pair of equations (2.1), (2.4) may also be 
written as 

E.a, ~) = L: E(v, ~)H~2>C~R)"P~2)m ;R dv (2.12a) 

and 

1 roo (H~2)(~) )~R . 
E(v, ~) = 4 J

SR 
E.(~,~) H~2)(~R) T d;. (2.12b) 

Now using the WKB-type Debye-Wats6n expansion 
for the Hankel function, we can show that3 . 4 

(2.13a) 
and 

where, as R -- 00, the variable y and the new integra­
tion parameter C are defined as 

and 
(~- ~R) = k(r - R)--ky (2.l3c) 

[l - (v/~)2]!-- (1 - S)! == C, 1m (C) ~ 0. 

(2.13d) 

Thus it follows that the appropriate (renormalized) 
form for (2.6), for the case R -- 00, is 

E(S, ~) = i roo roo E(S',~) 
1T Jo 100 

'. S'dS' x e-·kCllsm (kC'y) -- d(ky). (2.14) 
C' 

Noting that 

dv __ dS = -C dC (2.15) 
~ S ' 

we may now express (2.14) in the form of the familiar 
Fourier sine transform pair 

E.(y, ~) = f"E(C, ~) sin (kCy) dC (2.16a) 

and 

E(C, ~) = ~ roo E.(y, ~) sin (kCy)d(ky). (2.16b) 
1T Jo 

The above results may be generalized for diffractive 
boundaries characterized by finite surface impedances. 
Thus at r = R we write, for the surface impedance, 

(2.l7a) 

where H", is the azimuthal component of the mag­
netic field. Using Maxwell's electromagnetic field 
equations, we express the boundary condition (2.11a) 
as 

oE. = i'YJo E = iE. 
o~ Zs' - Z8 ' 

(2.17b) 

where Zs is the normalized surface impedance and 'YJo 
is the free-space wave impedance. In this case, the 
coefficient Rv in (2.3a) must be given by the expression 

R ___ H~l)'(~R) - iYsml)(~R) 

v H~2)'(~R) - iYsm2)(~R) , 
(2.17c) 

where 

1 H~1.2)·(~R) = [:~ H~1.2)(~)JSR and Ys = -. 
Zs 

(2.17d) 

Thus, for the surface impedance case, the corre­
sponding form for (2.14) can be shown to be 

E(S, ~) = 1- roo roo E(S', ~)(C' + 1) 
21T Jo 100 Ys 
x [eikC'Y + R( C')e-ikC'Y] 

e-ikCY S'dS' 
x --d(ky) 

[(C/Ys) + 1] C' ' 
(2.1Sa) 

(2.1Sb) 

is the reflection coefficient for horizontally polarized 
waves over a plane surface. It is interesting to note 
that for the surface impedance case it is necessary to 
take into consideration the singularity at 

l/R(C) = 0, i.e., ~ = Co = -Ys' (2.ISc) 

Thus, (2.lSc), together with the condition (2.I3d), 
indicates that, for Co in the third quadrant (i.e., Ys in 
the first quadrant)~ a discrete modal solution exists. 
This term, exp (ikyys), is recognized to be the surface 
wave in radio propagation.5 In this case, therefore, a 
continuous spectrum of propagating and evanescent 
waves, together with the surface wave, must be used 
in a complete representation of the solution. 6 We 
transform the path L in the S plane to the one con­
sisting of Dl + D2 along the branch cut (see Fig. 3) 
and account for the residue at the surface wave pole 
(C = Co) to evaluate the integral (2.l8a). Thus, using 
the relationships 

"P(C, y) == [(Cly.) + l]eikcy + [(C/ys) - l]eikCY 

= -"P(-C, y) (2.19a) 
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Im(S) 

S= I (Branch Point) 

-I~'~S~'~-I~-fi~~==~J ---L L ___ Re(S~ 

and 
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Pole) 

~BranchCut 

FIG. 3. Integration paths in the complex S plane. 

(C) (C) "fI'{C,y) 
a ,Y - a - ,y = (CI + 1){CI . _ 1) , Ys Y., 

(2.19b) 
where 

a(C, y) = e-ikCy/{C + Y.,), (2.19c) 

we can write Eq. (2.18a) as the transform pair 

E.(y, rfo) = (2i)_I(1'YJ E(C, rfo)"fI'CC, y) dC 

+ E(Co, rfo)"fI'(Co, y») (2.20a) 

and 

£(C, rfo) = ~ roo EzC~' rfo)"fI'C~, rfo)d(ky) , C2.20b) 
7T Jo [(Clys) + 1][(Cly"} - 1] 

for the continuous spectrum along the positive real 
axis (the radiation term) and for the discrete mode 
(the surface wave) 

E(Co, rfo) = y',loo£.(y, rfo)"fI'CCo, y)d(ky). (2.20c) 

For Ys-+ 00, the surface-wave basis function "fI'(Co,Y) 
vanishes and the transform pair (2.20a), (2.20b) 
reduces to (2.16a), (2.l6b). Several other forms for 
the generalized Bessel transform pair can be estab­
lished. The transverse component of the magnetic 
field H"" for example, must be expressed in terms of 
the basis functions 

(2.2Ia) 

where 'YJ is the intrinsic impedance of the medium of 
propagation. 

Thus, the appropriate transform pair for this case is 

and 

H(y, rfo) = 'YJ roo H",(~, rfo)H~2)m d~. (2.21c) 
JgR 

Here Y.(~) is identified as the transverse wave 
admittance for cylindrical waves. 

For problems with spherical boundaries, it is 
necessary to express the solution in terms of the 
spherical Hankel functions 

h~1.2)m = (7T/2~)~-H~1.2)m. (2.22a) 

Thus, for these problems, we use the following trans­
form pair: 

and 

E(~, fJ) = L: £(/1, (J)"fI'llm d/1 (2.22b) 

E(/1, (J) = {27T)-1 roo EC~, (J)h~2)(~)/1 d~. (2.22c) 
JSR 

Here the basis function is 

(2.22d) 

and RIl is chosen such that "fI'1l(~) satisfies the appro­
priate boundary conditions at ~ = ~R' A similar 
transform pair may be derived in terms of the 
functions h(~), 

h(1·2)(~) = ~h(1.2)( ~), (2.23a) 

which satisfy the differential equation 

a2E - + [1 - y{y + 1)]£ = o. ae (2.23b) 

The expressions for the transform pair (2.19) can be 
verified with no difficulty by following the steps 
outlined in this section. 

In the following section, we use the generalized 
Bessel transform pair to derive the well-known solu­
tions to the problem of radiation from an infinite 
electric line source in the presence of a conducting 
cylinder. This will provide a simple illustration of 
the technique and show, in particular, that the same 
form for the expansion of the fields may be used for 
all values of the radius of curvature, R, including 
cases in which R ->- 0 and R ---+ 00. 

3. RADIATION FROM A LINE SOURCE IN 
THE PRESENCE OF A CYLINDRICAL 

STRUCTURE 

As an illustrative example, we shall solve the 
problem of radiation by an electric line source in the 
presence of a perfectly conducting cylindrical structure. 
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using the generalized cylindrical transform discussed 
in the preceding sections (see Fig. 1). 

The electromagnetic fields may be derived from the 
z-directed vector potential A = Aa, 4»oz which 
satisfies the inhomogeneous wave equation 

1 a (aA) 1 a
2
A 

~ a~ ~ o~ + r a4>2 + A 

flo 
= - k2 Jz 

flolb(~ - ~o)b(4) - 4>0) 
~ 

(3.1) 

where ~o = kro, flo is the permeability, and I is the 
intensity of the current filament located at r = ro and 
4> = 4>0' Following (2,4), we express A(~, 4» as 
follows in terms of its transform a(fl, 4»: 

A(~, 4» = L'oo)a(fl, 4»1pi~) dfl· (3.2) 

Similarly, the Dirac b function b(~ - ~o) is repre­
sented in terms of its transform. Thus, using (2.1) and 
(2.4), we obtain 

~b(~ - ';0) = t i: 1pi~)H~2)(';0)fl dfl, ~ < ~o· (3.3) 

For'; > ';0 the appropriate expression for b(~ - ~o) 
is obtained by interchanging ~ and ~o in (3.3). Sub­
stituting (3.2) and (3.3) into (3.1) and noting the 
uniqueness of the transform, we obtain, on employing 
(2.2a), the ordinary differential equation for a(fl, 4», 

Cd
;2 + y2)a(fl' 4» = -tflolflH~2)(~0)b(4> - 4>0)' 

(3.4a) 
To solve for a(fl, 4», we note that7 

and 

Hence, 

a(fl, 4» = -ifloIH~2)(;0)COSfl(4> - 4>0 - 7T)/sin W" 

= -tfloIH~2)(;0)[cotfl7TcOSfl(4> - 4>0) 
+ sin fl( 4> - 4>0)]. (3.5) 

Since H~2)ao)1pI'(;) sin fl(4) - 4>0) is an odd function 
of fl, we get on substituting (3.5) into (3.2) the solution 
to the problem: 

A(;, 4» = -iflol L: H~)(;o)1pl'm 
X cot fl7T cos fl( 4> - 4>0) dfl. (3.6) 

This solution can be reduced to the familiar harmonic 
form by noting, as in Sec. 2, that the contour of 
integration C; + C2 can be substituted for the path L 
(see Fig. 2). Thus, using Cauchy's integral theorem, 
we obtain, from the residue at the poles along the 
positive real axis, Y = n = 0, 1, 2, 3, ... , 

A(;, 4» = - iiflol 2., €nH n(~o)1pllm cos n( 4> - 4>0)' 
n 

(3.7a) 
where 

{
I, n = 0 

€ = , 
n 2 n=I23 ... , 'J , , 

(3.7b) 

since we take only half the value of the residue at 
11 = O. The Watson expansion for A(~, 4» may be 
derived from (3.6) by closing the path L with the 
infinite semicircle in the lower half-plane. Thus, 
noting that the poles in the lower half-plane are at the 
values of Yn that satisfy the modal equation (2.8a), we 
see that 

A(;, 4» = -ti7Tflol 

x 2., [H~2)(~0) ( ~t(~R) ) H~2)m 
n a[HIl (~Rn.!afl 

X cot fl7T cos fl( 4> - 4>0) 1~1'; (3.8) 

Now we derive the forms for A(~, 4» as ~R ->- O. 
Obviously, the Watson transform does not exist, and 
(3.6) reduces to 

A(~, 4» = -tfloI i: H~2)(~0)Jl'm 
x cotfl7TCOSfl(4) - 4>o)dfl. (3.9) 

Similarly, using the addition theorem for Bessel 
functions, we get from (3.7a) 

A(;, 4» = - tiflol 2., €nH~2)(~0)J r.(;) cos n( 4> - 4>0) 
n 

= -tif10IH~2)([e + ~~ - U~o cos (4) - 4>o)]t). 
(3.10) 

For the case ~R ->- 00 a - ~R ->- y) the cylinder 
becomes a flat surface, and again the discrete Watson 
transform does not exist. We express the solution in 
terms of the Cartesian coordinates x, y. Thus, making 
use of the WKB-type expansions for the Hankel 
functions (2.13), we get 

k R4> ->- kx and Y ->- k RS. 

Hence, cot Y7T ->- i coth (ikRS7T) ->- i along the path 
L, and (3.6) reduces to the Fourier expansion 

flI joo A(x,y)=- exp(-ikCyo) 
27T -00 

X sin kCy cos kS(x - xo) dS. (3.11) 
C 
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It is obvious that, in this case, it is not possible to 
express A(x, y) in terms of a (discrete) harmonic 
expansion similar to (3.7). 

Thus, we have derived in this section the connection 
between the continuous spectral representation of the 
solution, the discrete modal expansion (for finite 
values of R), and the discrete harmonic expansion (for 
bounded values of R). The various forms for the 
solution A(~, r/» may be verified directly. To obtain 
the harmonic expansions (R bounded), we begin by 
expanding the function (j(r/> - r/>o) in (3.1) in terms of 
the periodic functions cos n(r/> - r/>o)' The Watson 
expansions may be derived by expanding the function 
(j( ~ - ~o) directly in terms of the complete set of basis 
functions H~~)(~) that satisfy the appropriate boundary 
conditions at ~ = ~R [(2.8a)]. To obtain the Kontoro­
wich-Lebedev expansion, we begin by obtaining an 
expression for b(~ - ~o) using the transform pair 
(2.10). Finally, to obtain the Fourier expansion for 
the solution when R -+ 00, we begin the solution of 
(3.1) [with J. = I(j(x - xo)(j(y - Yo)] by substituting 
the Fourier transform of the function (j(x - xo): 

b(x - xo) = (21Tr l L: cos ~(x - xo) dr:!.. (3.12) 

4. CONCLUDING REMARKS 

We have demonstrated that it is possible to derive 
the solution to the diffraction problem (Sec. 3) for 
all values of the radius of curvature R (including both 
zero and infinity) through the use of a single transform 
pair. 

It is, therefore, possible to express the solution to 
the problem of diffraction by convex objects [in­
cluding corners of continuously varying radius of 
curvature (see Fig. 4)] in terms of the generalized 
Bessel transform. In this case, however, the basis 
function 1p,,(~) is also a continuous function of the 
second variable x (dx = R dr/», since it satisfies the 
varying, local, boundary condition. The solution of 
this problem which follows a similar analysis for 
closed structuresS is beyond the scope of this presen­
tation. 9 The continuous spectral representation of the 
solution, which is determined here directly (without 

\ 
\ 

.. 

\ 
\ 
\ 
\ 

(R--) 

FIG. 4. Radiation by an electric line source parallel to a convex 
cylinder of arbitrary cross section and variable surface impedance 
boundary. 

recourse to the harmonic representation), is also useful 
in reducing the problem of multi path propagation to 
a set of integral equations. Recently, Wait has derived 
exact solutions to these integral equations using the 
Wiener-Hopf technique.lo 
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The electromagnetic fields around a cylindrical boundary of variable curvature and surface impedance 
are expressed in terms of a complete set of local cylindrical modes, and Maxwell's equations are con­
verted into coupled differential equations for the forward and backward wave amplitudes. The local 
cylindrical modes are shown to merge with the Fourier type expansion of the fields over plane surfaces. 
As an illustrative example, the launching of a surface wave over an infinite wedge with a rounded comer 
is considered in detail. 

1. INTRODUCTION 

In this paper, we derive an analytic solution to the 
problem of diffraction of electromagnetic waves 
by a convex cylindrical boundary, characterized by a 
varying radius of curvature R(x) and surface imped­
ance Z.(x). The diffracting structure may be of either 
finite or infinite cross section (Figs. 1 and 2). 

The solutions are expressed in terms of a complete 
set of local cylindrical modes. Using a generalized 
Bessel transform, we show that the discrete Watson 
expansions of the fields merge with the Fourier-type 
(plane wave) expansions above plane boundaries 
(R --+ OJ) and with the Kontorowich-Lebedev trans­
form l for R --+ O. Thus, in our analysis, no restrictions 
are made on the local radius of curvature R(x); 
however, the surface impedance variations must be 
compatible with the surface impedance concept. 2 

The expansion of the solution in terms of the local 
cylindrical modes provides the basis for the trans­
formation of Maxwell's equations into a set of coupled 
first-order differential equations for the forward and 
backward wave amplitudes. An alternative expansion 
of the solution in terms of plane waves that are 
reflected by the local "tangent" planes results in 
stronger coupling between the component waves. 

Iterative solutions of the coupled wave equations are 
considered in detail. The first-order iterations (cou­
pling neglected) are identified as WKB-type solutions, 
and these are used to generate higher-order iterations 
which account for mode scattering. 

As an illustrative example, we have considered the 
launching of a surface wave over an infinite wedge 
with a rounded corner in Sec. 4. Expressions are 
derived for both the transmitted surface wave and 
the scattered mode amplitudes. 

2. FIELDS AROUND A CONVEX CYLINDRICAL 
BOUNDARY OF ARBITRARILY VARYING 
SURFACE IMPEDANCE AND CURVATURE 

EXPRESSED IN TERMS OF LOCAL 
CIRCULAR CYLINDRICAL MODES 

In this section, we shall consider the problem of 
radiation from an electric line-source J = J(x, y)a. 
parallel to a convex, cylindrical boundary of finite, 
cross-sectional area. The boundaries of the diffracting 
object are characterized by an arbitrarily varying 
surface impedance Z.(x) and radius of curvature R(x), 
where the variable x is the distance measured along 
the surface of the cross section (see Fig. 1). The special 
case of plane wave excitation can be obtained byallow­
ing the electric line source to recede to infinity (Sec. 4). 
Thus, in this paper, we are restricting our attention to 
horizontally polarized waves (the electric field having 
only an Ez component). The solutions for vertically 
polarized waves may be derived in a similar manner 
by substituting a magnetic line-source excitation for 
the electric line-source excitation and by inter­
changing the electric and magnetic properties of the 
diffracting body. 

In view of the geometry of the diffracting object, we 
construct a natural coordinate system (x, y, z) around 
the surface of the straight convex cylinder (see Fig. 1). 
The surfaces, x = const, are planes normal to the 
convex cylinder, and x is the distance measured along 
the boundary of the cylinder from the plane through 
the origin (x = 0) to the plane x = const. The 
orthogonal surfaces, y = const, are convex, cylindri­
cal surfaces around the diffracting boundary, and y 
is the (normal) distance from the boundary (y = 0) 
to the y = const surface. The z = const surfaces are 
planes normal to the axis of the convex cylinder, and 
z is the distance from the plane through the origin 

186 
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FIG. I. Radiation by an electric line source parallel to a convex 
cylinder of arbitrary cross-section and variable surface impedance 
boundary. 

(z = 0) and the z = const plane. Obviously, if the 
cylinder is of circular cross section of radius R = 
const, (x, y, z) is related to the cylindrical coordinates 
(r, cp, z') with r = y + R, cp = x/R, and z = z'. In 
the general case, however, x and yare related to the 
"local," circular, cylindrical coordinates, rand cp, 

y. r-R 

I 
I 

I 
l-

I 

J, (X •• Y.) 

Z.(X) 

Flo. 2. Propagation over an infinite wedge with a rounded corner. 

through the Jacobian of the transformation, J'l" where 

or or dR 
1 -

ax oy dx 
J-I - (2.la) T -

ocp ocp 1 
0 

ox oy R 
and 

ox ax 
0 R 

or ocp 
J T = 

oy oy 
(2.lb) 

1 
RdR ---

or ocp dx 

Thus, we have 

rex, y) = y + R(x), (2.2a) 

cp(x) = -.-. f dx 
o R(x) 

(2.2b) 

Note, therefore, that the differential elements of 
length along the three coordinate lines through an 
arbitrary point (r, cp, z) are 

dll = hi dr, dl2 = h2 dcp, and dl3 = h3 dz, (2.3a) 

where the metric parameters hi, h2' and h3 are 

hi = I, h2 = r, and 113 = 1. (2.3b) 

We now express Maxwell's curl equations in terms of 
the natural coordinate variables (r, cp, z) for an 
exp (iwt) time excitation. Assuming no field variations 
along the z axis, we see that these are 

(2.4a) 

1 a loRr - - (rR ... ) - - - = iw€E + J (2.4b) 
r or 'I' r ocp Z z' 

and 

(2.4c) 

in which Hr and Hq, are the nonvanishing components 
of the magnetic field and f1 and € are the permeability 
and permittivity of the medium of propagation, 
respectively. Equations (2.4) may be expressed in 
terms of the coordinate variables (x, r) through the 
transformations (2.1) and (2.2). Thus, on eliminating 
Hq, from (2.4b), using (2.4c), we obtain, 

oE. r - ax- = iWfl'RHr (2.5a) 

and 

- - = iw€ - E + - - - - + - J oRr [r 1 a (r OEz)] r 
ax R' k2 or R or R z' 

(2.5b) 
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where k = (')(.u€)! is the wavenumber of the medium 
and 

Jz = 1(j(r - r o)(j( rp - rpo)/ r 

= 1(j(r - ro)(j(x - xo)R/r, (2.5c) 

in which (j(x - xo), (j(r - ro), and (j(rp - rpo) are 
Dirac 15 functions. Equations (2.5a) and (2.5b) involve 
only components of the electromagnetic field trans­
verse to the x axis. For the special case R = const and 
Zs = const, Ez can be shown to satisfy the scalar 
wave equation 

2 1 0 (OEz) 1 o2Ez 2 V E = - - r - + - - + k E = iwpJ . 
Z r or or r2 Orp2 z Z 

(2.6) 

A solution for Ez satisfying the above equation can be 
expressed in terms of a complete modal expansion. 
Thus,for Zs = 0,3.1 

(2.7a) 

in which H~1.2)(~) are the Hankel functions of the 
first and sec;nd kind, respectively, and ~ and ~ Rare 
the dimensionless quantities 

~ = kr and ~R = kR, (2.7b) 

The electromagnetic fields satisfy the impedance 
boundary condition at r = R, 

oEz i'fJEz 
--=--, 
o(kr) Z" 

(2.7c) 

where 'fJ is the intrinsic impedance of the medium 
('fJ = (.uj€)l). Thus, the orders 'l'n of the basis functions 
H~:)a) satisfy the modal equation 

(2.7d) 

in which y. is the normalized surface admittance, 

Ys = 'fJ/Z •. (2.7e) 

We can also write the azimuthal dependence of the 
solution (2.7a) in terms of forward and backward 
wave amplitudes an(rp) and b ll (rp), respectively, as 

an(rp) + bn(rp) 

cos v,,(rp - rpo - 7T) 
oc-~~-~~~ 

00 

= 2i(e-iVn (4>-4>o) + eiVn(4)-4>o-h))! e-;p21i"V n• (2.8) 
p=o 

For p = 0, the first term of the sum is the forward 
traveling or direct wave from the source to the 
observation point while the second term is the contri­
bution from the backward traveling wave (propagating 
in the direction of decreasing rp). For p = 1,2,3, ... , 
the terms constitute forward and backward creeping 
waves which propagate around the cylinder p times 
in the forward and backward directions. 5 

For the general case in which the local radius of 
curvature and surface impedance are functions of x 
(see Fig. I), it is not possible to derive a solution in 
the separable form given in (27). However, in view 
of the above discussion, we- express the solution in 
terms of the complete set of basis functions H~:)(~) 
whose terms individually satisfy the local boundary 
conditions.4 Thus, these local basis functions which 
satisfy the modal equation (2.7d) for all values of x 
are not only functions of r but also functions of x 
[through R(x) and Ys(x)]. Therefore, we express the 
desired solution for Ez as 

00 H~~(~) 
Ez(~' x) = L e,,(x)--

n=1 N n 

H~:)(~) 
== L [ar/(x) + bn(x)] --. (2.9a) 

n N n 

Using the orthogonal properties of the basis functions, 
we recognize the electric field nth-mode amplitude e

71
(x) 

to be the transform of the function EzC ~, x), i.e., 

(2.9b) 

In the expressions above, which are recognized to be 
the Watson transform pair,4 the normalization co­
efficients N n and Mn must be chosen such that 

MnNn = ~27t[ H~2)'(~) :'1' [H~2)(m 

- H~2)(~) ~ [H~2)'m]J ov q=qR 
V=Vn 

(2.9c) 

It is useful to retain this freedom in the choice of the 
normalization coefficients at this phase of our 
analysis. 

In a similar manner, we define the Watson trans­
form pair related to the magnetic field component Hr. 
We note that, for the case R = const and Zs = 
const, the appropriate basis function for Hr is 
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Y"a)H~2)(~), where Y, a) is the nth-mode trans­
verse w;ve admittance n 

(2. lOa) 

Thus, we can write, for the magnetic field component, 

H
r
(;, x) = 1 h,,(x) Yn(;)H~~m 

n=l N n 

== 1 [a..(x) - bn(x)] Yn(;)H~~(;), (2.10b) 
,,=1 N", 

in which the magnetic field mode amplitude hn(x) 
[the transform function of Hr(~' x)] is 

100 (2)(1: d; 
hn(x) = fJ Hr (;, x)HvfI \0) -. 

~R Mn 
(2.10c) 

We are now left with the problem of determining 
the solutions of the electric and magnetic field mode 
amplitudes en (x) and hn(x) which are defined, 
respectively, as the sum and difference of the forward 
and backward wave amplitudes an(x) and b,,(x). To 
this end, we substitute the complete modal expansions 
(2.9) and (2.10) for Ez and Hr into the differential 
equations (2.5). Multiply (2.5a) by 

H(2)(~) ~ d; 
'n Mn; 

and integrate with respect to ~ between the limits 
[~R' 00]. Thus, using the orthogonal properties of 
the basis functions, we get 

(2.11a) 

Instead of term-by-term differentiation of Ez [(2.9)] 
with respect to x, we express the first term in (2.l1a) 
as 

_ (00 oEz H(2)(;) ~ d; 
J;R aX Vn Mn; 

= _!£ (OOEzH~~(~) ~ d~ 
dx J;R Mn ~ 

+fOOE.~(R~~(~)~) d; ;R aX Mn; 

den(x) 
= - -- + ! Cnmem , (2. 11 b) 

dx m 

where the coupling coefficient Cnm is defined as 

C =100 ~(R(2)(~) ~)R(2)(I:)!!I (211) 
nm :I Vn M I: v", Ii N . C 

<R uX nli m 

and we have taken note that both; and ~R are func­
tions of x. Hence, (2.lla) reduces to 

-den(x) . Vn ~ 
-~ = 1- hn(x) - k Cnmem(x). (2.11d) 

dx R m 

Multiplying (2.5b) by fJH~:)(;) d;/Mn and integrating 
with respect to ;, we obtain 

1
00 oR R(2) - fJ _r -2.!!.. d; 

;R oX Mn 

= ik (OO[.l. E. + ~(.I (JEZ)JH~~(;)!if 
JER;R 0; ;R a; Mn 

+ :; (00 !tJ(x _ xo)tJ(; - ;o)H~:)(;) d~. (2.l2a) 
n J;R 

We treat the first term in (2.12a) as the first term in 
(2.lla). Thus, it follows that 

-fJf oo 

oHr H~~(n d~ = _ dhn(x) + ! Dnmhm(x), 
<R oX Mn dx m 

(2.12b) 
where 

Dnm == (00 ~(H~~a»)H~~(~) ~ d;. (2.12c) 
Jb ox Mn N m ~ 

Instead of term-by-term differentiation of Ez with 
respect to ~ in (2.l2a), we integrate by parts (the 
application of Green's theorem in one dimension). 
Thus, it can be shown that 

(2.12d) 

Using the boundary condition (2.7c) and the modal 
equation (2.7d), we can show that the last term in 
(2. 12d) vanishes. Noting that H~:)(~) satisfies Bessel's 
differential equation, we reduce the right-hand term 
in (2.12a) to 

ik ("'E .l.(Vn)~(2)(~)!!I = i Vn e (x). (2.12e) J'R z;R; Vn Mn R n 

Thus (2.12a) can now be written as 

where 

(2.12g) 
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The relationship between the coupling coefficients 
Cnm and Dnm is now derived. From the normalization 
condition, it follows that 

~ rOO(H~~(~») (H~:)(~»)'lIn d~ = 0 
OXJSR N m Mn ~ 

= roo i.[(m~($»)'lInJ (H~~($») d$ 
JSROX Mn $ N m 

+ fOO i.(H~~($») (H~~)($»)'lIn d$. (2.13a) 
JSR oX N m Mn $ 

Thus, after some manipulation, it can be shown that 

MmNn d (Mm) Cnm + -- Dmn + I5nm -In - = 0, (2.13b) 
MnNm dx Nm 

where <5 nm is the Kronecker <5 function. For the par­
ticular choice of the normalization constants N m = 
Mm , (2.13b) reduces to 

(2.13c) 

While we have avoided term-by-term differentiation 
of the infinite series expansions for Ez and Hr , it is 
obvious from the above analysis that this would be 
permissible here since the local basis functions 
individually satisfy the varying boundary conditions. 
Using the relationships between the electric and 
magnetic field mode amplitudes, en(x) and hn(x) , 
respectively, and the forward and backward wave 
amplitudes an(x) and bn(x) [(2.9a) and (2.lOb)], 
respectively, we obtain the following, coupled, first­
order, differential equations: 

-dan(x) . 'lin () 
- I-a x 

dx R n 

~dTnm dR nm .!l 
= ,,:;.,-- am(x) + -- bm(x) + Jou(x - xo) 

n=l dx dx 
(2.14a) 

and 

-dbn(x) . 'lin b . ) ---"-'-'- + I - n( X 
dx R 

~ dTnrn dRnm -"( = k -d- bm(x) + -- am(x) - Jou x - Xo), 
n=l X dx 

(2.14b) 

where the transmission and reflection scattering co­
efficients dTnm/dx and dRnm/dx are defined as 

dTnm dx = -}(Cnm + Dnm) 

and 

(2.14c) 

Thus, for the particular choice N m = Mn, (2.14c) 
reduces to 

and 

(2.14d) 

From the above expression, it is clear that Tnn = O. 
On considering solutions to (2.14b), we shall discuss 
the effects of the above choice of the normalization 
coefficients. In the following section, we derive 
explicit forms for the coupling coefficients. 

3. EVALUATION OF THE SCATTERING 
COEFFICIENTS AND THEIR DEPENDENCE 

UPON THE DERIVATIVES OF THE 
LOCAL RADIUS OF CURVATURE 

AND SURFACE IMPEDANCE 

It is clear that the scattering coefficients dTnm/dx 
and dRnm/dx are related to variations in both the 
local radius of curvature R(x) and the local surface 
impedance Zs(x). It is convenient to separate the 
effects of the curvature variations from the effects of 
variations in the surface impedance. Thus we write 

dTnm oTnm d y s oTnm dR -=--+--
dx oYs dx oR dx 

(3.1a) 

and 

dRnm oRnm dys oRnm dR -=---+--. 
dx oYs dx oR dx 

(3.1b) 

To determine (oTnmloYs)(dYs/dx) and (oRnmloys) x 
(dYs/dx) [(3.1)], it is sufficient to evaluate Dnm 
[(2.12c)] for the case R = const since the coefficients 
Cnm are shown to be related to Dnm [(2.13)]. Thus, 
noting the orthogonality relationship between the basis 
functions, 

15 =100 H~~($) H(2)($) 'lim d; 
nm M Vm N l:: 

SR n m S 

= [ 'lIm~ (H(2)($)H(2)'($) 
M N ( 2 _ 2) Vn Vm 

n m'l'm 'I'n 

- H~~(~)H~!I'(;»JOO , 
5R (3.2) 

we obtain, for n -# m, 
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In (3.3) we have used the modal equation (2.7d) for 
the nth mode. Furthermore, we note that, since the 
modal equation is satisfied for all x, 

[:V (H~2)'(~R) - iY.H~2)(~R») :;l=vn 

- iH~~(~R) ix' = O. (3.3b) 

Using the relationship (3.3b), between dvn/dx and 
dy./dx, we reduce (3.3a) to 

. ~ d 
D = 'Vm R H(2)(1: )H(2)(1: ) ~ (M N )-1. nm 2 2 Vm 'iR Vn 'iR d n m 

Vm - Vn X 

(3.3c) 

Thus, using (2.13b) for n ¥: m, we obtain, for the 
transmission scattering coefficient, 

dTnm I 
dx R=const 

l' d 
= _,;;;",2'_ [~H~~(~)H~~)(mb dYX·(MnNmrt. 

Vn - Vm 

n ¥: m. (3.4a) 

For the choice Nm = 1, m = 1,2,' .. , (3.4a) reduces 
to 

dTnm I = - j dy./dx H~~a) (~ [H~2)'aR) 
dx R=const Vn - Vm av 

- iY.H!2)(~R)]vnrl 
_ dvn/dx H~!)(~R) 
- - (2)(' n ¥: m. 

Vn - Vm HVn ~R) 
(3.4b) 

In a recent paper, Wait5 uses the Wiener-Hopf 
technique to derive an exact solution to the problem 
of propagation across a circular cylindrical surface 
(R = const) with an abrupt, step-type change in the 
value of the surface impedance. Setting (Zsl - ZS2)/ fJ = 
dz. in the solution by Wait and noting that he has 
considered the dual problem of propagation by a 
magnetic line source (vertically polarized waves), we 
see that the above expression for dTnm [(3.4b)] corre­
sponds precisely to the value for the transmission 
coefficient Tnm derived by Wait. Similarly, it can be 
shown that 

-- - -- nr-m dR nm I Vn - Vm dTnm I ....<. 

dx R=const - Vn + Vm dx R=const' . 
(3.5) 

The above expression, for the reflection scattering 
coefficient, also corresponds to the value of the 

reflection coefficient R"m derived by Wait. 5 It also 
follows directly from (3.5) that, for the case 

(3.6) 

we may neglect the reflected waves. Using (2.l3b) 
and (2.l4c), we can show that 

dTnn lId (Mn) 
dx R=const = 2" dx In N n 

(3.7a) 

and 

dR nn I 1 dVn 1 d 
dx R=const= - 2vn dx = - 2Yn dx Yn· (3.7b) 

Thus, dTnn/dx = 0, if the normalization coefficients 
are chosen such that M" = N n • In the next section 
it will be shown that the term dTnn/dx constitutes a 
WKB-type, wave amplitude, modification factor. The 
reflection scattering coefficient dRnn/dx corresponds 
to the (dominant-mode) reflection coefficient in 
transmission line theory. 

We now consider, in detail, the scattering due to 
variations in the curvature only. Thus, we need to 
evaluate Dnm (2.12c) for the case ys = const. We note, 
in this case, that, since both v n and ~ are functions 
of x, 

.!!... H(2)(~) = [~H(2)(~) dV] + ~ H(2)(~)k dR . 
dx Vn av v dx Vn a~ Vn dx 

(3.8) 

On substituting (3.8) into (2.l2c), Dnm , n ¥: m, can 
be expressed as a sum of two terms Qnm and Snm. 
Thus, using (3.3a), we obtain 

Qnm = roo [~ [H~2)(m dV] H~~(~) ~ d~ 
)gR av dx Vn MnNm ~ 

= [ Vm~H;~(~) 2 ~ [H~2)'(~) 
MnNm(vm - Vn) aV 

- i H(2)(~)] dv] Y. v d gR 
X Vn 

= -Vm~R~~~(~R; [~ [H~~)'m 
MnNm(vm - Vn) a~ 

- YsH~~m]k dR] . (3.9) 
dx gR 

In (3.9), we have noted that since the total x-derivative 
of the modal equation vanishes, 

[:V [H~2)'(~R) - iYsH~2)(~R)] ::l=vn 

+ [:; [H~~'(;) - iYsm~)m]k ~:Jb = O. (3.10) 
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To evaluate Snm' we make use of the relationships 
between the Bessel functions and their derivatives.6 

Thus, 

S = [00 ~ [H(2)(~)]k dR H(2)(~) ~ d~ 
nm Jb a~ v" dx v.. MnNm ~ 

= vm~RH~~(~R)[~[H(2)'(~) _ i H(2)(~)]k dRJ 
2MnNm a~ Vn Ys v" dx b 

The explicit expression for Dnm is, therefore, 

X 2 2 2 2 ' [vm - (vn + 1) HVm - (vn - 1) ] 

n rt= m. (3.12) 

The WKB-type Debye-Watson expansions for the 
Hankel functions of large argument are7•3 

H(1.2)(~) = ( 2 )texp (:Fti1T) 
v" 1T~Cn<~) 

where 

X exp (±ii:Cn(U)dU), (3. 13 a) 

and 

~o = [v2 
- i]t == ~RSn(~R)' 1m Cn ~ O. (3. 13 b) 

Thus, the expressions for the scattering coefficients 
can be shown to be proportional to (dR/dx)/R3 for 
kR » 1. This factor clearly indicates the advantages 
of using the Bessel function expansion for the electro­
magnetic fields, (2.9) and (2.10), around the diffracting 
boundary. A plane wave expansion of the fields 
around the diffracting boundary will result in relatively 
stronger coupling between the component waves. 
Note that, even for R = const, these plane waves 
will be coupled. A related comparison of the solution, 
expressed in terms of Bessel function and plane wave 

expansions, has been carried out in detail for propaga­
tion in waveguide bends.s 

For the case n = m, we evaluate the expression for 
Dnn by noting that 

Thus, 

D __ ~ {.!.. dVn _ 2vnk dR/dx H(2) 
nn - 2 Vn dx (4v~ -l)MnNn ~R Vn(~R) 

X [:;- [m:)'a) - iYsH~2)(mlR 

+ .!£ In (Mn)}. 
dx N n 

(3.15a) 

Thus, for the choice M n = N n' 

D = _ !(.!.. dVn + vnk dR/dx 
tin 2 d 2 1 

Vn X Vn - 4 

+ Vn/~R [H(2)(~ )t k dR/dX). (3.15b) 
4v~ - 1 Vn R M nN n 

Substituting the WKB expansion of the Hankel 
function [(3.13)] in (3.10), we can show that 

dVn dR 
-~-k-, 
dx dx 

(3.16) 

and it follows from (3.15) that Dnn is also propor­
tional to (dR/dx)R-3, for kR » 1. The explicit forms 
for the transmission and reflection scattering coeffi­
cients for ys = const [(3.1)] can be obtained by 
substituting (3.15) into (2.14) and using the relation­
ship between Cnm and Dnm [(2.13)]. Here, too, we 
see that dTn,,/dx = 0 for the choice M m = N m' 

4. SOLUTIONS TO THE COUPLED, FIRST­
ORDER, INHOMOGENEOUS, DIFFERENTIAL 
EQUATIONS FOR THE WAVE AMPLITUDES 

In this section, we consider, in detail, solutions to 
the coupled, first-order, differential equations (2.14) 
for the forward and backward wave amplitudes o,,(x) 
and b,,(x), respectively. In view of the terms 
±Jot5(x - xo) appearing in these equations, we can 
show by direct integration about the immediate 
neighborhood of the point x = Xo (Le., xU- ~ x ~ x;i) 
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that the wave amplitudes must satisfy the periodic 
boundary conditions 

(4.1a) 
and 

(4.1 b) 

Various numerical methods for solving coupled, 
first-order, differential eq uations are presented in the 
literature, and the homogeneous forms of Eqs. (2.14) 
are often encountered in nonuniform waveguide 
problems.8- Io In this paper, we shall adopt an iterative 
approach since it affords further insight into the 
solution of this problem. Furthermore, as a result of 
the local Bessel function expansion of the solution, 
the coupling coefficients between the component 
waves are shown to be proportional to (dRldx)R-3. 
Thus, for structures with large radii of curvature, 
R(x), the iterative procedure would be very efficient. 

Neglecting mode conversion, we reduce (2.14) to 

da~ (dTnn ) 1 - - - -- + iVn an = Joo(x - xo) 
dx dx 

(4.2a) 

and 

db~ (dTnn ) 1 - - - -- - iv b = -J o(x - x ) dx dx n n 0 0 , 
(4.2b) 

where the superscript 1 denotes first-order solutions, 
dTnmldx is assumed to vanish for m ':;6 n, and dRnm/dx 
is neglected for all n. The expression for dTnn/dx is 

dTnn = ! !!...In (Mn). 
dx 2 dx N n 

(4.2c) 

Thus, using (4.1), we get, after some manipulation, for 
Xo ::;; x ::;; Xo + XL' 

1 iJo(Mn(Xo)Nn(X»)! an(x) =-
2 Mn(x)Nn(xo) 

x exp [-i(f:n ~ -; fLvn ~) ] 

[ (
1 i"'L dU)]-I 

X sin 2" 0 Vn R (4.3a) 

[ (
1 ("'L dU)]-I 

X sin 2" Jo Vn R . (4.3b) 

fn the above expressions, we recall that both Vn and R 
are functions of the variable of integration, u. Note 

that, for the case R = const and z, -+ 0, the expression 
for the electric field mode amplitude [(2.9a)] is 

en(x) = iJo cos vn(cP - cPo - 7T)/sin Vn7T. (4.4) 

For R = const and z, -+ 0, the appropriate ex­
pression for the product of the normalization coeffi­
cients MnNn [(2.9)] is 

in which we have used the value of the Wronskian, 

(4.5b) 

Thus, substituting (4.4) into (2.9a) and making 
use of (4.5a) and the definition of Jo [(2.12g)], we 
see that the solution for E z( ~,x) [(2.9)] reduces to 
the expression (2.7a), as must be the case. We note 
that the expression for the forward mode amplitude 
an(x) [(4.3a)] constitutes not only the direct wave 
propagating in the positive x direction but also the 
creeping waves which propagate around the convex 
cylinder p times, p = 1, 2, 3,···. To show this 
explicitly, it is necessary to expand the sine function 
in the denominator of (4.3) in an infinite geometric 
series. For the case kR» 1 and for lossy surfaces 
[Re (Z,) > 0], however, we may retain only the 
direct waves. Thus, Eqs. (4.3) reduce to 

I( ) J (MnCXo)Nn(X»)! ('L'" dU) an X ~ - 0 exp -I Vn -
Mn(x)Nn(xo) "'0 R 

(4.6a) 
and 

( Lx du i"'L dU) x exp i Vn - - Vn - . 
"'0 R 0 R 

(4.6b) 

We have noted earlier in this paper that, for the choice 
Mn = N n , the expression for dTnn/dx vanishes and 
the square root coefficient in (4.6) reduces to unity. 
For Mn :;6 Nn, this square root term adjusts the 
amplitude of the nth-node amplitude such that the 
energy contained in nth mode is constant. To show 
this, we note that 

i
oo H~m H~m Mn 

en(x) -- hn(x) -- = en(x)hn(x) -. (4.7) 
SR N n N n N n 

It is for this reason that we have identified the term 
dTnn/dx with the WKB-type amplitude factor. 
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Similarly, the argument of the exponential functions 
in (4.3) and (4.6) are identified with the WKB-type 
phase integral or the phase memory concept.11 •3 

The first-order, WKB-type solutions [(4.3) and 
(4.6)] for the forward and backward wave amplitudes 
may be substituted in the terms on the right-hand side 
of (2.14) to obtain second-order solutions for the 
coupled wave amplitudes. This procedure, while 
accounting for mode scattering, neglects reconversion. 
Therefore, we write (2.14a) as 

da~, (dTnn iVn) 2 S( f ( ) - - - -- + - an = JOu X - XO) + 1 X , 
dx dx R 

(4.8a) 

where the superscript 2 denotes second-order solutions 
and 

~ dTnn 1 ~dRnn 1 
!I(X) = .£., - an(x) + .£.,- bn(x). (4.8b) 

n=l dx n=l dx 
n;"m 

Thus, on retaining the direct waves only, the solution 
to (4.8b) is12 

a~(x) = a~(x) - .Cexp (f'Yn(V) dV)!I(U) du, (4.9a) 

where 

(4.9b) 

is the modified propagation coefficient and a~(x) is 
given by (4.6). Ifwe cannot neglect the creeping waves, 
p = I, 2, 3,'" , we substitute for a~(x), in (4.9), 
the expression (4.3a) times a constant coefficient. This 
constant is determined by applying the periodic 
boundary condition (4.la). The procedure above may 
be applied to determine the reflected wave amplitudes 
bn(x) and repeated to obtain higher-order iterations. 

For cylindrical structures of infinite cross section, 
such as wedges with rounded corners (Fig. 2), the 
same iterative procedure outlined above may be used. 
In these cases, however, the boundary conditions are 

and 

bn(oo) = O. (4.10b) 

Since in this case we have no creeping waves to 
account for, the first-order WKB solutions are given 
by (4.6). 

An important factor that must still be considered 
in this paper is the appropriate forms of the expan­
sions for the electromagnetic fields in regions where 
R~ 00. 

In these regions, the Watson transforms (2.9) and 
(2. 10) do not exist. It has been shown that the discrete 
Watson transform is directly related to the continuous 
modal expansion4 

E.(~, x) = t L:e(v, x}lpvWMv dv, (4.11a) 

where the path of integration L is along the real axis 
(see Fig. 3) and the basis function 1p.(~) is 

(4. 11 b) 

It follows from the boundary condition (2.7c) that 

R = _ H~l)'(~R) - iYsH~l)(~R) . 
v H~2)'(~R) - iYsH~2)(~R) 

(4.11c) 

The transform function e(v, rp) is defined, as in (2.9b), 
as 

(4. 11 d) 

where the normalization coefficient Mv (independent 
of ~)may be chosen arbitrarily. For R ~ 00, it is not 
possible in the above continuous spectral expansion 
to choose Mv equal to the square root of (2.9c) as for 
the case when R is finite. In this case (R ~ 00), it is 
convenient to choose the normalization coefficient 
to be 

(4.12a) 

1mCv) 

L » 

FIG. 3. Integration path in the complex v plane. 
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Thus, using the WKB-type Debye-Watson expansion 
for the Hankel functions (3.13), we can show that 

lim [V'va)Mv] 
~R-+ '" 

-+ (~) (C + l)leikCY + R(C)e-ikclI] (4.12b) 
7T~RC Ys 

and 

(4.12c) 

where 

C = (1 - S2)"!, 1m C < 0, S2 = ('1'2 - l)W, 

and R( C) is the reflection coefficient for horizontally 
polarized waves over a plane surface: 

R(C) = (Cly. - 1) . 
(C/Y. + 1) 

(4.12d) 

Thus, the corresponding form for the transform pair 
(4.11a) and (4.l1d) for R-+ 00 can be shown to be4 

and 

e(S, x) = ("'Eiy, x) e-
ikCv 

d(ky), (4.13b) 
Jo CjYs + 1 

where the path of integration L is along the real S 
axis (Fig. 4). Deforming the path of integration L to 

Im(S) 

S -I (Branch Point) 

~~.~S~.-~I--1f~~==~ --L - L"'--Re(S)~ 

\ G>_So 
\ (Surface Wave 
~\ Pole) 

--------' Branch Cut 

D, ~ 

FIG. 4. Integration paths in the complex S plane. 

the path Dl + D2 around the branch cut and ac­
counting for the surface wave pole C = Co = -Ys' 
we can write (4.13) as 

and 

E.(y, x) = .L ('" E(C, X)[(C + 1) eikClI 
27T Jo Ys 

+ (~ - 1 )e-
ikClIJ dC 

+ E(Co, x)e-ikC01I? 
l 

(4. 14a) 

E(C, x) == e(C, x) - e( -C, x) 

= l'" E.c~, x) 

[(c/y +1)eikClI+(C/y _l)e-ikclI] 
X s s d(ky), 

(CjYs+ 1)(C/ys-l) 
(4. 14b) 

for the continuous spectrum along the positive real 
C axis and for the surface wave mode 

E(Co, x) == lim [(C + ys)e(C, x)] 
c .... co 

= Ys 1'" E.(;, x)e-ikColld(ky) 

_ I' ( ) iH!!)'(;R) + y.H~!)aR) 
- 1m e Yo, x (2) , 

V-+Vo Hvo(;R) 
(4.14c) 

where the subscript ° is used to identify the quantities 
associated with the surface wave. Thus, we have 
derived the direct relationship between the mode 
amplitudes for the Watson transform en(x) and the 
mode amplitudes (continuous and discrete) for the 
Fourier-type transform E(C, x) and E(Co, x). As an 
illustrative example, consider the launching of a 
surface wave in the region x < ° (R -+ 00; see Fig. 4); 

E(y, x) = Eo exp [-ik(Sox + CoY)], (4.I5a) 

where Eo is a constant. The WKB-type expression for 
the electric field [(2.9)] in the region of the bend where 
R is finite can be shown to be 

E(~, x) = ao(x)H~!)a) 
No(x) 

= EoG~:tH~:)(~) 
X exp ( - if i dU) [Mo(x)No(x)]-l, 

(4.15b) 
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where the product of the normalization coefficients, 
(2.9c), is 

Mo(x)No(x) 

= _ ;R H(21(t ) ~ [H(2)'(t ) _ iy H(21(t )] 
2 '0 'OR iJ'II • "R 8' 'OR '0' 

(4.15c) 

and the Debye-Watson expansion of the Hankel 
functions is used to show that 

To derive the expressions for the higher-order 
modes, we substitute the expression in (4.l5b) for 
ao(x) into the right-hand side of (2.14). Thus, we 
obtain 

dan (dTnn . 'lin) dTno - - - -- + I - an = - ao (4.16a) 
dx dx R dx 

and 

_ dbn _ (dTnn _ i 'IIn)b = dR no a. (4.16b) 
dx dx R n dx 0 

The solutions for the higher-order modes are, there­
fore, 

l'" dTno 
anCx) = - - ao(u) 

o du 

[ 
r"'(dTnn 'lin) ] X exp - Ju Tv + i R dv du (4. 17a) 

and 

1
00 dRno 

bn(x) = -- ao(u) 
'" du 

[ 
r"'(dTnn . 'lin) d ] d 

X exp - Ju Tv - I R V u. (4.17b) 

A uniform, plane wave, excitation can be considered 
in a straightforward manner by noting that an electric 
line source of magnitude 

(4.18) 

located at, = '0 and x = Xo (Fig. 1), will generate a 
uniform plane wave at the surface of the cylinder 
if we let '0 - 00. 

5. CONCLUDING REMARKS 

The electromagnetic fields around a convex cylindri­
cal boundary have been expressed in terms of a 
complete set of local cylindrical modes. Through the 
use of a generalized Bessel transform we have shown 

that the Watson transform for regions with finite 
radii of curvature merge with the plane wave expansion 
appropriate over plane boundaries (R --->- 00). It has 
also been shown4 that, for R - 0, the generalized 
Bessel transform reduces to the Kontorowich­
Lebedev transform.1 Thus, in our analysis, no 
restrictions are made on the local radius of curvature 
of the boundary. 

The expansion of the fields in terms of local 
cylindrical modes reduces Maxwell's equations into 
a set of first-order, coupled, differential equations. 
Using the explicit forms of the scattering coefficients, 
we have shown that the coupling is proportional to 
(dRjdx)R-3 for R - 00. 

An alternative expansion of the solution in terms 
of local plane waves results in stronger coupling 
between the component waves. In the local plane 
wave expansion, we must, of course, characterize the 
boundary by the reflection coefficients for the local 
tangent planes. 

Although in this paper, we have restricted our 
attention to 2-dimensional problems, this analysis 
may be applied to 3-dimensional problems, provided 
that the following conditions are satisfied13 : (a) The 
major contributions to the received fields are from 
the region along the straight line path between the 
source and the receiver ; (b) the variations of the 
boundary curvature and surface impedance, trans­
verse to the path of propagation, are small compared 
to the variations along the path. 

ACKNOWLEDGMENTS 

The author wishes to thank F. Ullman for his 
comments and J. R. Wait for stimulating discussions. 
The manuscript was prepared by Mrs. M. Alles. 
This work was supported in part by a grant from the 
University of Nebraska Engineering Research Center. 

1 M. J. Kontorowich and N. N. Lebedev, J. Phys. 1,229 (1939). 
• E. Bahar, Radio Sci. 5, 1069 (1970). 
3 J. R. Wait, Electromagnetic Waves in Stratified Media (Perga-

mon, Oxford, 1962). 
'E. Bahar, J. Math. Phys. 12, 179 (1971). 
6 J. R. Wait, J. Math. Phys. 11,2851 (1970). 
• G. N. Watson, A Treatise on the Theory of Bessel Functions 

(Cambridge U.P., London, 1952). 
7 A. Sommerfeld, Partial Differential Equations in Physics 

(Academic, New York, 1949). 
8 E. Bahar, IEEE Trans. Microwave Theory Techniques 17, 

210 (1969). 
• S. A. Schelkunolf, Bell System Tech. J. 34, 995 (1955). 

10 E. Bahar and G. Crain, Proc. lEE 115, 1395 (1968). 
11 K. G. Budden, Radio Waves in the Ionosphere (Cambridge 

U.P., London, 1961). 
U E. Bahar, Radio Sci. 2, 287 (1967). 
18 J. R. Wait, Electromagnetic Surface Waves, Advances in 

Radio Research, Vol. 1 (Academic, New York, 1964), pp. 157-217. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 2 FEBRUARY 1971 

Recursive Method for the Computation of the SOn' SOn.l, and ISOn 
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VVe find a procedure whereby the matrix elements of the finite SO,..l transformations (principal 
series) can be expressed as a single integral, over a compact domain, of two matrix elements of the SO,. 
subgroup and a multiplier. In this way we automatically obtain their classification by the canonical 
chain SO'" 1 :::> SO,. :::> ••• :::> SO •. Analytic continuation yields the SO"+l matrix elements in a recursive 
form. VVe obtain the asymptotic behavior of the boost matrix elements. The Inonti-VVigner contraction 
yields the ISO,. representation matrix elements classified by the chain ISO,. :::> SO,. :::> ••• :::> SO •. 

1. INTRODUCTION 

The unitary irreducible representation (UIR) 
matrix elements of the unimodular orthogonal (San), 
pseudo-orthogonal (SOn.I) and inhomogeneous or­
thogonal (ISO n) groups have been a fertile field of 
research due to their repeated appearance in mathe­
matical physics: For S02' they are the partial waves 
of a periodic function; for S03' they are the 
D~m'(I1., fl, y) functions. These and the Wigner 
d~m.(fl) functions l have been so extensively used in 
angular momentum theory that no further remark is 
needed. 

Bargmann's d~m.a) functions for2 SOu have 
been used in Toller's cross-channel partial wave 
expansion.3., The SO, d matrices5 were used by 
Freedman and Wang in order to find the quantum 
numbers of the daughter Regge poles which belong 
to a given Toller pole. This, plus the important high­
energy behavior of the corresponding scattering 
amplitude, were found by Sciarrino and Toller' 
using the S03.I boost matrix elements d!1.(t).6.7 

Going further, the SO'.I UIR matrix elements have 
also been calculated.8- lo In particular, Strom9 per­
formed the contractionll SOu -+ IS03.1' whereby 
the D-matrix elements classified by the canonical 
chain become the matrix elements of Poincare trans­
formations lO •12 in the chain of subgroups which 
includes the homogeneous Lorentz group. The matrix 
elements 0[13 SOs representations have found 
applications in nuclear physics,14 and the theory of 
master analytic representationsI5 has given a method 
of reaching higher groups. 

The importance of the matrix elements of the 
general San, SOn.I, and ISOn UIR's lies presently in 
mathematical physics: As group representations, 
they constitute an orthogonal and complete set of 
functionsI8 on the group manifold, and any well­
behaved, square-integrable function on the group 
can be expanded in terms of them.16- I8 

Thus far, however, they have remained as "certain" 
functions, some of whose relevant properties were 
known, but for which one could not write explicit 
expressions. The reason for this is not difficult to see: 
The straightforward procedure of obtaining them 
as eigenfunctions of the set of Casimir operators of 
the group and its subgroups involves setting up a set 
of simultaneous differential equations which, together 
with difference and recursion relations,1.9·19 gives rise 
to rather involved expressions which are still under 
investigation20 for San and SOn_I.I, n > 5. 

Bargmann's2 and Toller's' work, however, did not 
involve the solution of differential equations, but 
rather an integration over the compact subgroup. 
This was reduced further to a single integral, which has 
been successfully performed. In this article we set up 
a procedure which generalizes the above two cases. 
We shall work, however, only with the component 
of the group connected to the identity. We thus 
disregard the parity indices in the UIR labels. 

In Sec. 2 we remind the reader how a complete and 
orthogonal set of functions on a homogeneous space 
X can be used to set up a multiplier representation of 
a group G whose action on X is known. The space X 
is here the San group manifold. The properties and 
labels of a complete and orthogonal set of functions, 
the UIR matrix elements for San classified by the 
canonical21 chain, are reviewed in Sec. 3. The group 
G which acts on this space may be, however, larger 
then San' 

In Sec. 4, using a generalization of what is known 
in the literature as the Gell-Mann operator,22 we can 
apply G = SOn.1 in such a way that, while the trans­
formations in the San subgroup give rise to "rigid" 
mappings of the X manifold, the boosts in SOn.1 
generated by the Gell-Mann operator "deform" X. 

In Sec. 5, the complete and orthogonal set of 
functions over San introduced in Sec. 3 is used to set 
up a multiplier representation. The matrix elements 

197 



                                                                                                                                    

198 KURT BERNARDO WOLF 

of the Gell-Mann operator, proportional to the gener­
alized Wigner di~l1L'( ') functions for SO n.1' are 
thus expressed as an integral over the SOn subgroup 
(which is reduced to a single integral over one angle) 
of two UIR matrix elements of SOn (simplified to 
the Wigner d functions for SOn) and a multiplier. 

The asymptotic behavior of the SOn.1 d functions 
as' ->- 00 and the contractionll SOn.1 ->- ISO n can be 
seen already from the integral form. In fact, from the 
contraction of SOn.1 we obtain the UIR matrix 
elements of ISO n classified by the chain ISOn:::J 
SOn:::J '" :::J S02' 

The geometrical meaning of the deformation effected 
on SOn by the generators built through the Gell-Mann 
operator is shown, in Appendix A, to be but the 
natural action of the group SOn.1 (in its Iwasawa 
decomposition G = KAN) on itself, modulo AN. 
A useful integral is calculated in Appendix B. 

We want to emphasize that in our procedure 
(a) the UIR matrix elements are classified by the 

canonical chain, 
(b) several key properties are apparent from the 

integral form, 
(c) the integration is performed over a compact 

domain and can be expressed in terms of a sum of 
products of trigonometric and hypergeometric func­
tions. 

We can point also to the possibilities of extending 
this method, taking a complete and orthogonal setof 
functions over other groups or homogeneous spaces­
noncompact ones, for instance-and considering 
multiplier representations of a larger group of 
deformations of it, thus obtaining expressions for the 
representation matrix elements of noncom pact groups 
classified by chains which can thus include noncom­
pact subgroups.4.23 

2. MULTIPLIER REPRESENTATIONS 

In order to fix our notation, we shall make some 
well-known definitions. 

Let X be a homogeneous space under the group 
of transformations G, and put Xl, X2' ••• E X. A set 
of functions {tPn(X)} , n E N, discrete, is orthogonal 
on Xif t .. dft(x)tPn(x)tPn'(x) = b,v(n, n'), (2.1) 

where dft(x) is an appropriate measure on X and 
bx(n, n') = 0 for n :F n' and will be detailed below. 

Furthermore, the set {tPn(x)} is complete on X if 

L w(n)tPn(x1)tPn(X2) = bX(Xl' x 2), (2.2) 
neJ..V 

where wen) is the Plancherel weight on N; b~dx1' x 2) = 
o for Xl :F X2 and is normalized in such a way that the 
integral (2.1) (which is a sum, if X is discrete) 
fulfills 

L dft(x1)f(x1)o .\:(x1, x2) = f(x2), (2.3) 

for any continuous test function lover X. The 
normalization of (2.1) and (2.2) can be arranged to 
be such that17 

.L w(n)f~ON(n, n') = frl" (2.4) 
neX 

and hence oxen, n') = [w(n)]-l(jn.n" 
Any well-behaved function I over X can be ex­

panded in the complete and orthogonal set {tP,,(x)} as 

f(x) = 2 w(n)/ntP"(x), (2.5) 
nelY 

wherein = (tPn ,!h is the scalar product between two 
functions on X, defined as 

(f,f'h: = l/ft(X)f(X)f'(X) 

= 2 w(n)/,,/~ = (J~f"b· (2.6) 
11 ElY 

The action of G on X, x ~ x'(x, g), is assumed to 
be defined such that 

x'(x"(x, gl), g2) = x'(x, glg2) and x'(x, e) = x 

for the unit e of the group. When X = G, this is 
satisfied if either x'(x, g) = xg or x'(x, g) = g-lx, 
but may be of a more general nature when X :F G. 

The action of G on I(x) is defined through 

f(x) ~ UW(g)f(x) = M().)(x, g)f(x'(x, g», (2.7) 

where the multiplier2 MW(x, g) satisfies 

M().)(x, gl)M().)(x'(x, gl), g2) = M().)(x, glg2) 

and MW(x, e) = I and does not vanish over X x G. 
A multiplier can be written in the form2•16 

M().)(x, g) = [p(x)j p{x'(x, g»ll., (2.8) 

where p(x) is some function over X. 
The requirement of unitarily of the representation 

(UCA-l(g)f, U().)(g)f) = (J,f') 

implies, through (2.6) and (2.7), 

dft(x'(x, g» = IM().)(x )1 2 (2.9) 
dft(x) ,g , 

if we restrict the form of the multiplier and the 
possible values of ;. in (2.8). In particular, if X = G 
and dft(x) is the Haar measure, the ratio (2.9) is 
unity and the multiplier may only be a phase. 
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We can construct a matrix representation of G as 

D~n,(g) = [w(n)(V(n')]~(4>n' UW (g)4>n')' (2.10) 

where the rows and columns are labeled by the 
(discrete) index n EN. We can check through (2.2) 
that (2.10) follows the group multiplication law and 
that 

D~n·(e) = t5 n.n· 

while, if (2.9) is satisfied, the representation (2.10) is 
unitary, i.e., 

D~n,(g-I) = D~'n(g). 

At this stage, however, we cannot make any state­
ment as to the irreducibility of (2.10) nor as to 
whether we can find all unitary representations in 
this way. 

Next, we want to express the transformation (2.7) 
as generated by a Lie algebra of operators. 2 Assume 
ga) belongs to a I-dimensional subgroup of G 
parametrized by a variable ~, whose generator is 
NW,i.e., 

UW(g(mf(x) = exp aNw)f(x). (2.11) 

The differential form of N W is thus 

NWf(x) = ~ [Mw(x, g(ml(x'[x, gW])],~o. (2.12) 
d~ . . , 

When the multiplier MW(x, g) is taken in its form 
(2.8), it is straightforward to see that N W can be 
written as 

(2.13) 

where N(O) is the generator of the vector representation 

exp aN(O»f(x) = f(x'[x, gWD (2.14) 
and 

Q = [N(O) p(x)]/ p(x). (2.15) 

3. THE ORTHOGONAL GROUP 

The n-dimensional (unimodular) orthogonal group 
SOn has been extensively studied.21 We need, however, 
a brief survey of its properties in order to define the 
problem. 

We introduce the "Euler-angle" parametersI7 ,18.24 

in SOn (enclosing collective variables in braces) by 

Rn({o}(n» = R n_I({0}(n-1»Hn({0(n)}), 

Hn({o(n)}) = Vn-I,n(O~~l,n) X ' , . X V23(0~~»V12(0~~», 
(3.1) 

where Rk E SDk and r piO) is a rotation by 0 in the 
(p, q) plane; the ranges are 0 :::;; 012 < 27T and 0:::;; 
0k-l.k ~ 7T, k = 3,4, . , . , n. In this way, we express 
the SOn manifold as the product of the SOn_I mani­
fold with [the (n - I)-dimensional surface of] the 
n-dimensional sphere Sn. Notice that RaCrt., {3, y) = 
r12(IX)r23({3)r12(Y) differs from the more general usage 

which writes rI3({J) as the middle factor. This will 
cause no inconvenience, however. 

The Haar measure can now be split according to 
(3.1) as dR n = dRn_ 1 dHn , where 

dH n = sin n-2 071- 1 ,71 dO n-1,n dH 71-1, dH 2 = d012 . 

(3.2) 

From (3.2) and the ranges specified above, it can 
be seen that the volume of SOn is vol SO" = 

vol SOn_IS", where Sn = 27Tl"/rnn), and vol S02 = 
27T. 

The basis vectors for the unitary irreducible 
representations of SOn, classified by the canonical 
chain of subgroups SOn:::> SO 71-1 :::> ••• :::> S02' are 
labeled with the Gel'fand-Tsetlin21 kets 

1".1 1".2 1",[nI2] 

I n- 1 ,1 1,,-1,2 1,,-1,[(n-1)/2] 

1 4,1 '4,2 
(3.3) 

'3,1 

'2,1 

where [kI2] is the largest integer smaller or equal to 
k/2. This ket transforms as the lk == {Jk.1' l k ,2' ••• , 

''',[k/2]} VIR of SO"' k = 2, ... , n, while the repre­

sentation row is labeled 'k-1 == {'''-I, 1,,_2, ... ,12}. 
For the single-valued VIR's of SOn, all lab are integers 
constrained by the "zigzag" inequalities 

'k,l 
VI 

'''-1,1 ~ 'k,2 
VI 

'''-1,2 ~ 'k,3 
VI 

'k-1,3 ~ 

, k = 3,'" ,n, 
(3.4a) 

which end, to the right of (3.3), as 

VI 

'k-1,[(k-1)/2]-I ~ 'k,[kI2] 
VI 

11k- I .[(k-1)/2]1, k odd, 
(3.4b) 
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or 

Jk.[kI2]-1 

VI 

Jk- 1.[(k-l)/2] 2 IJk .[k/2]1, k even. (3.4c) 

In order to economize subindices, we will agree on 
the following notation: Let J (resp. Land M) stand 
for I n (resp. I n- 1 and I n- 2) , the UIR label of G = SOn 
(resp. H = SOn_1 and K = SOn_2)' The row labels 
are I = I n_ 1 (resp. M = I n- 2 and N = I n- a), and 
hence L = {L, M} and M = {M, N}; dim n J (resp. 
dimn_l Land dim,,_2 M) denote the dimension of the 
VIR. The scalar representation of SOk' k = 2, ... , 11, 

is J. = 0 = {O, ... , O}. 
The representation D-matrices for SO n are defined 

as 

where we have written the ket and bra (3.3) hori­
zontally. The generalized Wigner d matrices (to be 
calculated in Sec. 5) are defined through 

diMv(O) = (J LM N/l'n-l.iO) IJ I.; M N) (3.6a) 

and are seen to be diagonal in M, the representation 
label of K, and independent of its row-label N, since 
r n-1.n(O) commutes with all transformations in K. 
Similarly, 

D'Lf!.L'.fr(R n_1) = Ih.L' D§}..,il'(R n_1) (3.7) 

is independent of J, the VIR label of G, and diagonal 
in that of H. 

In particular, for S02 the di.lIIAO) are dJ (0) = eiJ8 

i.e., the indices L, M, and L' are absent; for SOa, the 
d matrices are div(O), the usual Wigner d matrices1 

for rotations around the x axis. For SOn, n 2 4; we 
have the general expression (3.6). 

Equations (3.1), (3.5), (3.6a), and (3.7) allow us to 
write (omitting arguments in an obvious way) 

(3.8) 

where 

Ei.il".L'.i"r(Hn) = dfwL'(O~~1.n)Ef;"s·,.ll'S'(Hn_1) 
(3.9) 

and EL(H2(O» = dL(O). Thus we see that the D­
matrix elements (3.8) can be expressed in terms of 

the Wigner d-matrix elements (3.6). Only the latter 
need therefore be calculated explicitly. 

Most of the interesting properties of the D and 
d matrices can be found before their explicit calcula­
tion. Chief among them are the orthogonality and 
completeness relations (2.1) and (2.2), which read18•17 

,dimnJ, J J I 

~ -- ~ D L.T:(Rn)D ".L'(R n} = t5a(Rn, R",), 
J vol G ".'" 

(3.11) 

where 15 L ,," etc., stand for a product of Kronecker 
t5's in the' individual indices. The Plancherel weight is 
seen to be w(J) = dim n J/vol G, while the role of the 
index n in (2.1) is taken by the triad of collective 
indices (J, I, L'). 

From (3.8) and the splitting of the Haar measure, 
we can find the "orthogonality" relations for the E 
matrices as 

r dH n 2 Ei,J\.L • .lI.(H n)ELJI"L;,fI;(H n) 
j.". .f!, 

vol G dim n_l (L1) 
= t5L L ,t5.f! .f! ,t5J J' -- (3.12) 

•.• •.• . vol H dim" (J) , 

while (3.2), (3.9), and (3.12) yield, for the d matrices, 

l u • n-2 0 dO ' dim n _ 2 M J J' 
SIn £., IK dL,.lIL.(O)dL,.lIL.«(}) 

o .11 vo 

_ 15 dim n _ 1 II dim n _ 2 I2 vol G 
- J.J' d' . 2' (3.13) 

Imn J (vol H) 

Thus, while for S02 we have in {dJ (O)} a complete 
and orthogonal set of functions, for SOa the Wigner 
{div(O)} constitute an orthogonal set in the index J. 
The set is complete for L = L' = 0.17 •18 For SOn, 
n 2 4, the general result is (3.13), and this includes 
the sum over M-Iabels. Indeed, it is not difficult to 
show that {Eoo,JU.l(Hn)} is an orthogonal and com­
plete set of functions on SO n-1 \SO n and the same 
result holds for {d~o«(})} on SOn_1\SOn/SOn_1Y 

We shall use (3.10), (3.11), and (3.13) in order to 
build the D matrices (2.10) after we have defined, in 
the next section, the group of transformations we 
wish to represent. 

The parametrization of R:; E SO 71-1.1 follows the 
definitions (3.1), (3.8), and (3.9) with 

(3.14) 
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where bn- 1 •nm is a boost in the (n - I)th direction 
through a hyperbolic angle ~, 0::;; ~ < 00. The 
metric tensor has nonzero components gll = ... = 
gn-l.n-l = -gnn = 1, and the SOn-l.l manifold is 
expressed as the product of the SO n-l manifold and 
[the (n - I)-dimensional surface of] the n-dimen­
sional hyperboloid. The Haar measure is dR; = 
dRn_ 1 dH; , where 

(3.15) 

The Gel'fand-Tsetlin kets for SO n-l.l' classified 
by the canonical chain25 SOn-l.1 ::::> San_I::::> ... ::::> 

S02' can also be written in the form (3.3), where, for 
one-valued representations, all indices (except J n.l) are 
integer and follow the "zigzag" inequalities (3.4). The 
domain of the index I n •1 == A is the complex plane. 
We are at present interested in the principal series25 •26 

of VIR's which corresponds to A = -Hn - 1) + 
iT, T real, and the finite-dimensional (nonunitary) 
representations which lie at A = 0, 1, 2, ... and for 
which the rest of the inequalities (3.4) hold. 

The symbol P diML'm will be used for the boost 
matrix elements of the pseudo-orthogonal group 
defined, in analogy to (3.6a), as 

The orthogonality and completeness relations 
(3.10) and (3.11) must be carefully justified, as both 
dimn J and vol G are infinite, and an integral with the 
Plancherel measure dw(J) takes the place of the sum 
in (3.11). However, we shall not come to need them. 

The 1S0n_ 1 group is the semidirect product of 
Tn-I, the translation group in n - 1 dimensions, and 
San_I' Its elements are commonly written as 
(x, Rn_ l ), x E Tn- 1 and R n- 1 E San_I, with the usual 
semidirect product law. The group manifold of 
ISO n-l is thus the product of the (n - I)-dimensional 
Euclidean space and the SOn_l manifold. 

We shall parametrize the former in spherical 
coordinates, expressing R~ E ISOn_1 as 

(3.16) 

where tn-l(~) is the translation along the (n - I)th 
direction, 0 ~ ~ < 00. In terms of the more usual 
notation, 

R~ = (0, R n- 1)(tn-lm, 1)(0, H n-l) 

= (Rn-1tn-1(~)' R n_1H n_1). 

The Haar meaSure is dR~ = dRn_ 1 dH~, where 

(3.17) 

Again, we can use the Gel'fand-Tsetlin kets24 (3.3) 
where, for the one-valued representations, all indices 
(but I n •1) are integer and follow (3.4). The index 
J n-l == r is real. 

The symbol IdiJl.w(~) will be used for the radial 
translation matrix elements written, in analogy with 
(3.6a) and (3.6b), as 

IdiMLm = (JLMNJ tn- 1m JJI:MN). (3.6c) 

The remarks following Eq. (3.6b) apply to ISOn_1 • 

4. DEFORMATION OF THE GROUP 
MANIFOLD 

Let Mp.v be the generator of a rotation rp.v(O) in 
the (fl, v) plane, fl, v = 1,2, ... ,n, of the n­

dimensional Euclidean space (gp.v = <51'.)' i.e., 

exp (OMp.v) = rp.v(O). 

In terms of the Cartesian coordinates xp.' they may 
be represented as 

o 0 
Mp.v = xp.- - Xv-, (4.1) 

oXv oXI' 

and can be checked to obey the commutation relations 
of the generators of an SOn algebra: 

[Mp.v, Mpu] = g"uMvp + gvpMl'u 

+ guvMpl' + gpl'M" v , (4.2a) 
while 

[Mp.v' xp] = gvpxp. - g"pxv ' (4.2b) 

Finally, we build the second-order Casimir opera­
tor of SOn as 

<1>(n) - 1. "'" M M - 2.r:.. "V "V' (4.3) 

Now we construct22 
p..v 

M".n+1 == l[x", <1>(n)] = t I (Ml'vxv + XVMp.v) (4.4) 
v 

and check that the operators (4.4) together with (4.1) 
satisfy (4.2a) when we enlarge the range of the 
indicesfl, v,etc., to 1,2,"', n, n + 1, withg".n+1 = 
-x2<5".n+l' where X2 = I xp.x,.. Thus we have built, 
for x2 = 1, an sOn.l algebra (4.2a) out of the ison 
enveloping algebra. 

Furthermore, we define the operators 

M (u) -M + ".n+1 = ".n+l axp" (4.5) 

and check that (4.5) too, together with (4.1), generates 
an SOn.l algebra whose second-order Casimir opera­
tor is 

<1>(n.l)(a) = <1>(n) _ "'" M(u) M(u) 
, .r:.. ".n+l ".n+l 

I' 

= <1>(n.l)(o) _ a2x2 • (4.6) 
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We assume that we already know the representation 
D-matrices of the san group, and now we want to 
construct a representation (2.10) for the SOn.1 group. 
As we need only the P d matrices for SOn.1, we consider 
the boost generator 

M (a) '" a 2 a [~( 1) ] n.n+1 = Xn £.., Xil - - X - + 2 n - + a XIl ' 
Il aXil aXil 

(4.7) 

which we have written explicitly in terms of the 
Cartesian coordinates through (4.1) and (4.4). 

We introduce the spherical coordinate system24 

in the n-dimensional space which is best suited for 
the description of the san group manifold, as 

(4.8a) 

where x({O}) = (0, ... ,0, x), i.e., Xn = x cos 0n_1, 
and 

Xn_p = x sin 0n-1 ... sin 0n_p cos On_p_1, 

p=I,''',n-l, (4.8b) 

where we have put Oq == 0~~~+1 for economy. 
When acting on functions f({O}) of the angular 

coordinates, the operator (4.7) can be written as 

M~~~+1 = sin 0 :0 + [ten - 1) + a] cos 0, (4.9) 

where we have put 0 == 0n-1 for short. (In this connec­
tion, see Appendix A.) 

In order to identify (4.9) as the generator N(;J of a 
multiplier representation (2.11) in its form (2.13), we 
set 

-A = Hn - I) + a, (4.10) 

N(O) = sin 0 1. = ~ ao am' (4.11) 

where w = In tan (!O) and Q = cos 0, whereby 

p(O) = sin 0 (4.12) 

provides an appropriate construction of the multi­
plier (2.7). 

The transformation in the parameter w brought 
about by the operator exp ('N(O) is a translation by 
" i.e., w __ w' = w + ,. Hence, in the parameter27 0 

(4.13) 

Therefore, we can state that, while the operators 
(4.1) generate rigid rotations of the space (4.8b) and 
therefore on the group manifold of San through 
(4.8a), the operator (4.9) is the generator of a deforma­
tion of the group manifold which affects only the 

parameter 0 == O~~1.n through (4.13). (See Appendix 
A.) 

We shall work with functions on the san manifold, 
rather than on the n-sphere (the homogeneous space 
SO n-1 \SO n), since not all representations of the former 
can be realized on the latter.18 

5. THE d-MATRIX ELEMENTS 

As was stated in Sec. 3, we can use the set of 
Di.L

2
(Rn) functions which is orthogonal and com­

plete, in order to build a representation of the group 
of transformations on san through the general 
procedure (2.10). The specific transformation we are 
interested in is the deformation (4.13) with the 
multiplier (2.8) built out of (4.12). Thus, we shall 
build the D matrices of SOn.1 with rows and columns 
specified by the UIR labels of its canonical chain. 

We choose the action on the group to be g"(g', g) = 
g'g. [See text around Eq. (2.9).] Then, for Rn E san, 

(Di~.L", U
W

(R n)Di:.L2') 

vol G J, 
= C'JL,.L/JJ,·J2 -d-' -- DL,'.L2'(R n), (5.1) 

Imn J 

because of (2.7), (2.9), and (3.10), 
Hence, we can write, for any (fixed, allowed) L, 

J dimnJ J W J 
DL .L2(Rn) = -- (Dt.L" U (R n)DL,L2), (5.2) 

, vol G 

incorporating the requirements of (2.10) and the in­
dependence of A and L, as in (3.7).28 

Using the operator (4.9) and Eqs. (4.10)-(4.13), 
we have 

(U . n-2 J, (Sin O)A J 2 ' 
X Jo SIn 0 dOd E,lIn,·(O) sin 0' d L,lIIL,·«() ), 

(5.3) 

where we have used (3.8) and (3.9), as well as (3.10) 
and (3.12), for SOn_1' 

In line with (5.2) and (3.6b), we set 

P {.I..L} r (dimn J . dimn J')! 
d JL' J'( "') = "---"-----"----'­

vol G 

X [D:b, exp aN().)DiL,], (5.4) 
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and we can check that 
(a) the representation property is fulfilled, i.e., 

~ l'd~;};,lJ"al) l'd~.!{J'('2) = l'd~Z!J'al + '2), 
J" 

(b) due to (3.13), 

l'd~i!J'(O) = bJ.J" 

Hence (5.4) indeed provides a representation of 

SOn.l· 
Our method of construction gives automatically 

the Gel'fand-Tsetlin classification of the representa­
tion D matrices. Indeed, from (3.4) (recall J",q == Jq, 
In-I.r == Lr), 

Jq ;;::: Lq ;;::: Jq+l' q = 1, ... , [11/2] - I, 
and ° ~ L[(n-l)/2] ;;::: IJ[n/2]l, 11 even, (5.5) 
or 

° ~ J[nI2] ;;::: IL[(n-l)/2]I, n odd, 

and similar relations between Land J', L' and J, and 
L' and J'. 

Thus, the SOn.l VIR labels in (5.4), 

I = {II' ... ,I[(n+1)/2]J == {A, L] 

= {A, L1 , ••• , L[(n-l)/2]}' (5.6) 

also fulfill (5.5) with respect to its row indices (J, J') 
through the replacements 11 -+ n + 1, J -+ I, and 
L -+J, except for the index II = A which is, so far, 
allowed to be complex and unrestricted. This we shall 
now investigate. 

In order to fulfill the unitarity condition (2,9), we 
notice that (4.13) yields 

si.nn-2 ()' d()' = (s~n (),)n-l, (5.7) 
smn-

2 
() d() sm () 

and thus, if we demand that -A - X = n - 1, we 
shall satisfy (4.10) when 

-A = Hn - 1) + iT, neal. (5.8) 

This provides the principal series of UIR's of 
SOn.l. 20 As the rest of the labels (i.e., 12 ,"', 

I[(n+1)/2]) satisfy (3.4)-(5.5), they are, indeed, VIR 
labels of the SOn.l representation matrices. 

We are also interested in the finite-dimensional 
nonunitary irreducible representations of SOn.l since, 
when we perform the Weyl continuation [i.e., when 
we consider the parameter , in (4.13) as ,= i()n, ° ~ ()n ~ rrl, we obtain the UIR matrices of SOn+1' 

It is known that the sOn+1 second-order Casimir 
operator (4.3) has eigenvalues 

cP(n+1) = -/(l + 11 - 1) + integer, / = 0, 1,2,···. 

(5.9) 

Under the substitution -/ = Hn - 1) + (J, Eq. (5.9) 
takes the form 

cP(nLl) = [~(11 - 1)]2 - (J2 + integer, 

(J = -Hn - I), -HI1 - I) - I,"', (5.10) 

which has the same dependence on (J as (4.6). 
The values of (J in (5.10) give the VIR's of SO"+1' 

and we can now identify I in (5.9) with A in (5.6) and 
see that (5.4), with ), = 0, 1,2, ... , will provide the 
V I R representations of SO ,,+1 . 

The explicit form of the d matrices (5.4) is, from 
(5.3), 

l'd().·Ll (Y) 
JJ/J' ., 

(dim" J . dim" J')! (vol H)2 " . 
"'- dlmn_o!vI 

dim,,_1 L dim"_'1 1.: vol G vol K Jl -

{or . n-2 J (·sin ())). J' , 
X Jo sm 0 dOdLJ1L,«() sin ()' dLJlL'(O). 

(5.11) 

The expressions for dimn J, dim n_1 L, and dim n _ 2 M 
can be found from the branching relations (3.4), but 
are, in general, rather cumbersome to express in 
closed form [for S02' dim2 J = 1; for S03' dim3 J = 
2J + 1; for S04, dim4 (1, 0) = 12]. Therefore, we 
shall leave them thus indicated. The second factor in 
(5.11) is 

(vol H)2 S,,_1 r(tn) 
---'----'--- - - - (5.12) 
vol G . vol K - Sn - rrtrO(n - 1)) . 

Equation (5.11) provides thus, when' = j()n and 
A = 0, 1, 2, ... , an inductive procedure whereby the 
d matrices of SO ,,+1 can be found in terms of those 
of SOn. 

The first step of the procedure is S02' where we 
have 

dJ(O) = eiJ8 using f" since ° ~ () < 2rr; 

(5.13a) 

but it can also be taken to be S04 (since the d matrices 
for SOu, S03 , and SOu are well known), since, due 
to the local isomorphism S04 "-' S03 X S03, we have 
the simple form5 

m 

i(L + m), teL - m), L) 

X C0(11 + 12),1(11 - 12), J'; 

i(L + m), t(L - m), L)eim8
, (5.13b) 
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where q ... ) are the S03 Clebsch-Gordan coeffi­
cients. 

The general form of the dhJ'(O) functions for SOn 
and SO n.1 will not be attempted here beyond the 
recursion formula (5.11), which may be of more 
practical use. 

The simplest cases, S02' S02,l ,2 S03,1 SOu ,4.6 

and5 S04 have been calculated as finite sums of 
trigonometric (and hypergeometric) functions. The 
expression (5.13b) for S04 is noteworthy for its 
simplicity. The appearance of 3-J symbols in the 
coefficient in (5.13b) and Holman's resu1t13 for S05' 
which involves 9-J symbols, suggests that a relatively 
compact expression for the general d matrices may yet 
be found. 

The recursion formula (5.11) can be used to deter­
mine the asymptotic behavior ofPd~LJ,m as' -+ 00. 

Indeed, from (4.13), we have 

sin O/sin 0' = cosh, - sinh, cos 0, 

and hence 

(5.14a) 

where 

A),£ _ (dimnJdimnJ')! rein) 
I.J.JL'J' - ! 

dim n_ 1 L dim n_ 1 r: 7T r(!(n - 1» 

X I dimn_2 Mdi~1L'(7T) 
,11 

X fSinn-2 0 dOd'Ll1L'(O) sin
2
" iO. (5.14b) 

In Appendix B we perform an integral which may 
be helpful in the evaluation of (5.11) and (5.14). 

The Id matrices for the ISOn groups are found as 
the matrix elements (3.6c) of the transformation 
generated by Xn = , cos 0, 0 == O~~1.n' In its form 
(2.7), 

U(Y1mf({On = exp (j~y cos O)f({O}) (5.15) 

is unitary [i.e., satisfies (2.9)] for, real. Notice, how­
ever, that it produces no deformation of the group and 
thus cannot be put in the form (2.8). 

The second-order Casimir operator R2 = L x pX p has 
the eigenvalue ,2, whence we can write, as for (5.11), 

I {y,LJ (dimn J dim" J')! (vol H)2 
d JLJ'(~) = -'---"'---"---'-- ---'----"­

dimn _ 1 L dim n _ 1 1.: vol G . vol K 

X L dim,,_2 M f"sin,,-2 0 dOdiML'(O) 
M Jo 

J' 
X exp (iy~ cos O)dLML,(O). (5.16) 

Furthermore, we can check that (5.15) and (5.16) 
are indeed contractionsll of the corresponding ex­
pressions (4.13) and (5.11), i.e., that 

l'd{j·,~-l ,(r) _ I iY.l;) ,(~) 
JLJ '" .<-+icr> JLJ , 

(iA~=)'sl 

since 

(sin O/sin 0')" ~ exp (i~y cos 0). 
.I.-1r:t:-

(i;.~=;·.n 
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APPENDIX A 

The Iwasawa decomposition29 of8(' G = SOn.1 can 
be written uniquely as g = k({O}) . a('YJ) • n(~), that is, 

g = (k({On ~) (~ 
001 0 

o 
cosh 'YJ 

sinh 'YJ 
sin~ 'YJ) 
cosh 'YJ 

where k({O}) E K = SOn, the maximal compact 
subgroup of G parametrized as in (3.1),whereby we 
have k nn = cos 0 (using 0 == O~~1.n)' a('YJ) E A, the 
Abelian subgroup of G which corresponds to the 
boost in the nth direction in (3.14), na) EN, the nil­
potent subgroup of G, where ~ is the column vector 
(~1' ~2"" , ~n-1)' i its transpose, and 

8 = H ~~ + ... + ~~-1)' 

Consider now the transformation induced by 

Direct calculation yields 

cos 0 ~ cos 0' = (cosh' cos 0 - sinh ') 

X (cosh' - sinh' cos Ort, (A2a) 

exp 'YJ ~ exp 'YJ' = exp 'YJ( cosh, - sinh' cos 0). 

(A2b) 
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Notice that (A2a) is the same transformation as 
(4.13). The infinitesimal generator [as in (2.1) and 
(2.2») of the transformation (A2) on the space of 
functions on G/N is thus 

N = sin f) ~ - cos f) ~ . (A3) 
of) O'fj 

The parameter 'fj of the Abelian subgroup A c G 
does not appear as such in (A3) and thus30 o/O'fj 
commutes with (A3) as well as with all the generators 
of K and of N [whose action can be written in terms 
of those of K and A through (3.1»). Hence, we can 
choose that subspace of functions on G/AN ~ K 
which corresponds to an eigenvalue A under O/O'fj 
and now the operator (A3) takes exactly the form 
(4.9)-(4.10),which was obtained from the Gell-Mann 
formula (4.4)-(4.5) on the space K. The deformation 
which the latter produces on K is thus seen to be the 
same as the natural action of G = KAN on itself 
(modulo AN). [Notice, however, that this is not true, 
modulo H n , had we taken the decomposition (3.1).) 

Through a suitable choice of A, the operator (A3) 
can be made anti·Hermitian,31 and we know a com­
plete and orthogonal set of functions on K: the D 
matrices for san' Although it is suggestive to con­
sider a similar set on G/AN "" K as a subset of those 
on G, the theory of complete sets of functions on 
homogeneous spaces with noncom pact stabilizers is 
lacking. Some of the difficulties have been pointed out 
in Ref. 18. 

APPENDIX B 

Before solving the integrals in (5.11), (5.14b), and 
(5.16), we have to decide in which form we expect the 
integrand to appear and try to put the solution in the 
same form. The cases which are known suggest that 
dhJ,(f) will appear as a sum of powers of sin f) and 
ei9 for the compact cases and sinh, and e~ for the 
noncompact ones. 

We will therefore perform the integral 

where p, q, p', and q' are integers and where 0 and 
0' are related by (4.13). There , is real and A, in 
general, complex. If we want to be able to make the 
analytic continuation from SOn.1 to San+! easily, we 
need a form where we can replace , by iOn, 0 ~ 
On ~ TT, and then let A be a nonnegative integer. 

We express (Bl), expanding the exponentials by 

the binomial theorem, as 

I::q\·,q·m 
= 2n+q+q'-22II2~1(2IPI) (21~'1) 

y~O y'~O y Y 

x (1;1 ir (1;:1 ifJ(A + n - 2 + q + y, 

-A + q' + y', A + n - 2 + 21pI - y, 

where 
-A + 21p'l - y'; '), (B2) 

J(a, b, c, d; 0 = f df) sina tf) sin b to' cosc tf) cosG if)'· 

(B3) 
In order to solve (B3), substitute4 

x == sin f)lsin f)', dx = sinh, sin () dO, 

and the limits of the integral [0, TT) become [r~, e~), 
and 

sinm if) sinm
' tf)' 
= [e~m'(x - e-~)m+m'x-m'(2 sinh ,rm-m')i, 

cosn if) cosn' tf)' 

= [e-~n'(e~ - xr+n'x- n '(2 sinh 'rn-ni. 

Thus, when a + band c + d are odd and positive, 
we can expand 

J(a, b, c, d; n 
= (2 sinh ,ri<a+b+c+d)ei<b-d){ 

J.
ee 

X dx X-i<b+d)(X - e-')i<aH-U(e{ _ X)i<C+d-U, 
e-' 

using the binomial theorem, into a finite number of 
summands. This is the case in passing from S03 t04 

SOu, but it does not seem to be a general property. 
Thus, we have to effect the further transformation 

y = (x - e-')(2 sinh ')-I, 

in order to bring it to a form where it can be found32 

to be 

J(a, b, c, d; 0 
= (2 sinh ,ri<aH+c+d)eb{ 

rU(a + b + 1»fO(c + d + 1» 
X 

rO(a + b + c + d) + 1) 

x F(tCb + d); tCa + b + 1); 

tCa + b + c + d) + 1; 1 - e2
,). (B4) 

When we use (Bl)-(B4) in order to find the d­
matrix elements for SOn+1, we obtain them in terms 
of trigonometric (and hypergeometric) functions, 
i.e., in the same form as we assumed them to be when 
we choose to construct the form (Bl). 
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The concept of iterated integral-transform trial functions is introduced. Its formal correspondence 
with the iterative solution of integral equations is established. Extensions and generalizations are 
indicated, and some of the advantages of the approach are discussed. Ways are suggested to make 
tractable the multidimensional integrals that arise in the method. 

1. INTRODUCTION 

Recently I proposed! the use of integral-transform 
(IT) trial functions in quantum-mechanical calcula­
tions. The conceptual simplicity of the basic idea 
enhances the computational successes that we achieved 
with IT trial functions. 2- 6 This simplicity makes 
possible extensions and generalizations quite natural. 
The systematic construction of special, correlated 
many-particle wavefunctions,7 various generalizations 
of the conventional scaling procedure and their 
natural relation to correlation,S and the construction 
of new mo7ecular functions from atomic bases9 are the 
most important examples of such extensions. In this 

work, a further generalization will be introduced, the 
concept of iterated IT trial functions. 

2. INTEGRAL TRANSFORM FUNCTIONS 

Integral-transform trial functions may be con­
structed by the prescription 

Fb) = r So(t)Fo(tx) dp.(t). (2.1) 
JDo 

In Eq. (2.1) Fl(x) is an approximation to F(x) , the 
exact solution to the eigenvalue equation HF(x) = 
EF(x), Fo(x) i's the known exact solution of a model 
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1. INTRODUCTION 

Recently I proposed! the use of integral-transform 
(IT) trial functions in quantum-mechanical calcula­
tions. The conceptual simplicity of the basic idea 
enhances the computational successes that we achieved 
with IT trial functions. 2- 6 This simplicity makes 
possible extensions and generalizations quite natural. 
The systematic construction of special, correlated 
many-particle wavefunctions,7 various generalizations 
of the conventional scaling procedure and their 
natural relation to correlation,S and the construction 
of new mo7ecular functions from atomic bases9 are the 
most important examples of such extensions. In this 

work, a further generalization will be introduced, the 
concept of iterated IT trial functions. 

2. INTEGRAL TRANSFORM FUNCTIONS 

Integral-transform trial functions may be con­
structed by the prescription 

Fb) = r So(t)Fo(tx) dp.(t). (2.1) 
JDo 

In Eq. (2.1) Fl(x) is an approximation to F(x) , the 
exact solution to the eigenvalue equation HF(x) = 
EF(x), Fo(x) i's the known exact solution of a model 
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Hamiltonian Ho = H - V, Do is a suitable integra­
tion domain of the nonphysical t-space, tAt) is its 
measure, and So(t) is the unknown shape function to 
be determined. In fact, Eq. (2.1) may be considered 
the (formal) continuous analog of a conventional 
expansion of F(x) in eigenvectors Fo(x; n) of Ho(x): 

N 

F(x) ~ FI(x; N) = L CnFo(x; n). (2.2) 
n=l 

If {Fo(x; n)} forms a complete set, lim Fl(x; N) = 
F(x) as N - 00. Similarly, if Fo(tx) were complete 
in Do with respect to the continuous index t, FI(x) 
would become F(x) for the exact Set). 

In practice, Fl(x; N) is usually replaced by the more 
flexible Gl(x; N, ex): 

N 

Gix; N, ex) = L DnFo(a.nx; n). (2.3) 
n=l 

For fixed N, GI is more accurate than FI(x; N) 
because of the N additional adjustable parameters 
a. n • The connection between (2.1) and (2.3) is more 
than a formal one: By interpreting (2.1) as a Stieltjes 
integral, an appropriate choice of So and f-l will result 
in GI . 

The exact Set) satisfies a generally difficult integral 
equation. Instead of attempting to solve this, one 
parametrizes some preselected trial So(t; T) and 
optimizes the parameters {T} variationally. The choice 
of an appropriate analytical form for So(t; T) is 
facilitated by the observation7 that as V = H - Ho 
approaches zero, So(t) - 6(t - 1). Thus the chosen 
So(t; T) should become the 6 function for certain 
limiting values of its parameters {T}. A useful class of 
such 6-converging sequences islO 

So(t;..T) = iTf(Tt) / loof(S) ds, 

provided thatf(x) is even,f(O) ¥= 0, and the integral 
in the denominator exists and is absolutely convergent 
with respect to its upper limit. Then lim So(t; T) = 
bet) as T - 00. 

3. ITERATED INTEGRAL TRANSFORMS 

A. Basic Definition 

The prescription of Eq. (2.1) is equally valid if 
Fo(tx) is replaced by FI(tX). In general, the nth 
iterated IT function is generated from its predecessor, 
Fn_l(x), by the formula 

F n(x) = r Sn_l(t)F n_l(tX) dt 
JDn-l 

=f ... r Fo(x Yi ti) n S;(ti) dti · 
Dn-l JDo .=0 .=0 

(3.1) 

The n-fold integral in Eq. (3.1) is the result of applying 
n times the equivalent of Eq. (2.1) to Fo(x). At each 
iteration stage both the domain and the shape function 
may be changed. Before we indicate variants of Eq. 
(3.1) and their practical usefulness, we shall exhibit 
and discuss an important formal relationship between 
the integral equation formulation of our eigenvalue 
equation H IF) = E IF) and the exact shape function 
Set). 

B. Integral Equations and S(t) 

Assume that Ho(t) It) = E(t) It) holds for all t, 
a continuous index. (Standard Dirac notation is 

used.) In the x representation (coordinate representa­
tion) this reads Ho(x, t)(x I t) = E(t)(X I t), and we 
identify Fo(tx) with (x I t) and Ho(x) with Ho(x, t). 
We also assume that {It)} forms a complete set, i.e., 
SIt) (tl dt = 1. Then we may expand the eigenfunction 
IF> of the total Hamiltonian H in {It)}: 

IF) = J dt It)(t I F), (3.2) 

i.e., 

(x I F) == F(x) = J dt(t I F) (x I t) 

= J dtS(t)Fo(tx). (3.3) 

Thus Set) is an expansion coefficient, but it is a con­
tinuous function of the state index t. We can recast 
Eq. (3.2) in the form of an integral equation by the 
following formal manipulationsll : 

IF) =Jdt It>(tl [E - E(t)] IF) 
E - E(t) 

=Jdt It>(tl WF). (3.4) 
E - €(t) 

The last step in Eq. (3.4) follows from H = Ho(t) + 
Vet) and from the equation [E - Ho(t)] IF) = V IF). 
Introducing the resolution of the identity 

J dy Iy)(yl = 1, 

fly)} an arbitrary complete set, we obtain 

IF) =Jdt (JdY (t I y) (y I VF») It) 
E - E(t) 

=fdY(fdt 11)(1 I y) (y I VF»). (3.5) 
E - E(t) 

In the x representation the two alternative expressions 
of Eq. (3.5) give 

F(x) = f dtS(t)Fo(tx) (3.6) 
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and 

F(x) = f dyG(x, y; E)V(y)F(y), (3.7) 

provided that the following identifications are made: 

Set) =fdY Fo(ty)V(y, t)F(y) , (3.8) 
E - €(t) 

G(x, y; E)V(y) =fdt Fo(ty)Fo(tx)V(y, t). (3.9) 
E - €(t) 

Equation (3.7) is the conventional integral equation 
reformulation of the SchrOdinger equation; G(x,y; E) 
is the energy-dependent Green's function, but ex­
panded in the continuous eigenset of Ho(x, t). Equa­
tions -(3.6) and (3.3) are identical, and Eq. (3.8) is 
the fundamental relationship we sought. 

The only unusual feature in the above comparison 
is the use of continuous-index sets for the expansions. 
These are by no means uncommon [the well-known 
plane waves, exp (-itx), form such a complete 
continuous set]. Nevertheless, they play a crucial 
role in the integral transform method and are instru­
mental in its success. 

It is instructive to compare the integral equation 
approach with the integral-transform trial function 
method. To solve Eq. (3.7), one needs to know the 
"perturbation" V(y) as well as the Green's function 
G(x, y; E). The latter is particularly difficult to 
calculate analytically, even for the simplest quantum 
mechanical systems.12 In contrast, in using Eq. (3.6), 
the only unknown quantity is Set), and neither the 
partitioning of H into Ho and V nor the eigenvalue 
spectrum {€(t)} need be known. Of course, an expres­
sion completely analogous to Eq. (3.8) exists for the 
discrete expansion coefficients Cn of Eq. (2.2) [or for 
Dn of Eq. (2.3)]. However, the advantage of using 
Fl(X) instead of F1(x; N) or even Gl(x; N, a) as a 
trial function in variational calculations is that only 
the single function Fo(x) has to be known instead of 
the N basis functions {Fo(x; n)}. We generate our set 
by simply "scaling" the variables in Fo(x). Because of 
the smoothing-out effect of integration, one expects 
Fl to be less sensitive to errors in a trial Set) than its 
counterparts Fl(x; N) and Gl are to errors in {Cn} 
and {Dn , ocu }, respectively. 

The integral equation (3.7) may be solved by some 
sort of iteration procedure. In the simplest version, 
one generates F.,(x) by replacing F(y) in the integrand 
by Fn-l(y) , n = 1,2, .. '. Its equivalent in the 
integral transform method arises if the trial So(t) is 
generated from Eq. (3.8) by replacing F(y) by Fo(y)· 
Thus, at least formally, the mathematical foundations 

of the iterated IT method are established. However, 
we do not need Eq. (3.8) to generate an approximation 
to Set), an important practical advantage. Further­
more, the idea behind Eq. (3.1) is more akin to a 
rariation-iteration approach, since Fn(x) is optimized 
variationally [by optimizing Sn_l(t)]. This happens at 
each iteration, independent of any previous optimiza­
tion, and consequently the convergence to F(x) may 
be expected to be faster than in the case of the simple 
iteration method. 

C. Generalizations 

The formal correspondence I have established 
between the integral equation approach and the 
iterated integral transforms refers to the total solution 
of the Schrodinger equation, i.e., x in F(x) denotes the 
collection of all particle coordinates. However, 
because of the variational character of the iterated IT 
trial function, this restriction may be relaxed. Thus, 
one may choose to iterate on the basic building 
blocks, the orbitals, as the other extreme possibility. 
In particular, the iteration may be confined to the 
radial part of the orbital. 

Each iteration introduces a double integration. 
This could rapidly lead to an "integration catas­
trophe." One may avoid this by eliminating some of 
the integrations via an extension of the shape function. 
To illustrate, consider F2(x): 

We eliminate the integration with respect to t1 by 
replacing Sl(tl) with S1(t l )b(11 - J(lo». This gives 

A(x) = r dtoSO(tO)S1 [f(to)]Fo [to!(to)x]. (3.11) 
JDo 

One may consider Fa(x) as a special version of the 
generalization G2 of Eq. (3.10): 

G2(x) = r 1 dto dt1S01(tO, t1)Fo(tof1x). (3.12) 
JDl Do 

The "generalized second iterate" G2 of Fo reduces to 
F", if one replaces SOl by SOSI; it becomes F2 if the 
coupling of to and t1 is via the 15 function. Properly 
speaking, G2 is not an iterate since it cannot be 
generated from some precursor. This is because the 
variables to and tl are assumed coupled in SOl(tO, t1)· 

The extension of F2(x) to an nth-generalized iterate 
Fnix) is in the spirit of the integral transform corre­
lated wavefunction approach introduced elsewhere.' 
Thus, Fnk(x) is obtained from Fn(x) of Eq. (3.1) by 
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introducing the generalized function ij(Po, Pl , ••• , 

Pk- 1), k ~ n - 1, Pi = P;(to, t1, ... ,tn- 1): 

Fnix) = r . J ij(Po, ... , Pk-1) 

n-fold 

x Fo(Xgti) gSi(t;)dt;. (3.13) 

The role of the generalized function ij(Po, ... , Pk- 1) 

is to reduce the n-fold integral of Eq. (3.1) to the more 
tractable (n - k)-fold integral of Eq. (3.13). The 
latter is confined to the manifold Po = P1 = ... = 
Pk- 1 = O. F2(x) of Eq. (3.11) is identical to F21 (X) 

of Eq. (3.13), with Po = t1 - f(to)· For detailed 
mathematical definitions, Ref. 7 should be consulted. 

4. DISCUSSION 

I have indicated a formal relationship between the 
iterated IT approach and the simplest iterative solu­
tion of the integral equation form of the Schrodinger 
equation. It has also been shown how to generalize 
iterated IT functions while making them computa­
tionally more tractable. These conclusions are further 
indications of the superiority of IT trial functions in 
comparison with conventional discrete-set-variational 
functions. The latter cannot be improved iteratively 
(unless the more difficult integral equation formulation 
is used), because that would require that a new 
discrete set, of which Fl(x; N) is the first member, is 
known or can be generated simply. In contrast, the 
very flexible prescription of Eq. (3.1) demands only 
the formal scaling of the previous iterate and the almost 
trivial choice of a new shape function Sk(t) (which 
may even be Sk_1).13 

Some of the important advantages of the iterated 
integral-transform functions approach are listed below. 

(i) The approach provides a systematic way of 
generating new trial functions that are guaranteed to 
be more accurate than previous iterates. Furthermore, 
the generation of new, complete sets is equally 
feasible14 ; by iteration these sets can be improved 
systematically. 

(ii) The number of parameters in the Sk may be 
kept low, since at each iteration these are optimized 
independently of the parameters in previous shape 
functions. 

(iii) The choice of Sk(t) can be based on computa­
tional convenience, i.e., either rendering Fk+1(x) and/ 
or integrals involving Fk+1(X) analytically tractable 
or making the integrands slowly varying, smooth 
functions of the integration variables. For example, 
when k > 1, the simplest fractional-integral trans­
form4 [Sk = 1, Dk = (A, B)] should probably be 
sufficient and useful since one expects (A, B) to 

bracket unity quite closely and, therefore, fine details 
of shape lose their importance. Furthermore, 
numerical integrations over the domain Dk ought to 
be efficient. 

(iv) The special case Sit; Tk) = So(t; To), all k, 
corresponds to solving an integral equation by simple 
iteration. It has the great computational advantage 
that the parameters {To} need be optimized but once. 
Losing the variational character of the energy is 
unlikely to be important at this stage. Of course, So 
should already be sufficiently accurate, i.e., the simple 
iterative approach should converge, and at a reason­
able rate. 

One disadvantage of the iterated integral transform 
method is the multidimensional numerical integrations 
one is forced to do in general. However, the advan­
tages more than compensate for this, especially when 
(iii) and (iv) are given special consideration. Further­
more, by using the generalized ij function, we can 
reduce the dimensionality of the IT trial function, as 
was indicated in Sec. 3C. Numerical integration 
techniques that take into account the ij-function-like 
behavior of Sk(t) are under investigation. In particular, 
the Hilbert transform method15 appears to be promis­
ing, especially since one has essentially unlimited 
freedom in selecting Sit). For an appropriately 
chosen Sk(t) one may, using the above method, 
replace a real integration with a sharply peaked 
integrand by a complex integration over a much more 
smoothly and slowly varying integrand. The "peaked­
ness" of the real integrand is handled analytically. 
Since it provides the major contribution to the 
numerical value of the integral, the accuracy of the 
residual complex integral is much less critical. A more 
primitive version of the above approach uses the 
special properties of the integrands we may encounter. 
Thus, all our integrals are of the form 

I =f' . ·f i:r S;(t;) dt;F(t}, t2 , ••• ,tk ), 
.=1 

k 

which we propose to break up into two integrals: 

1= CI1 + 12 = C rr(f Si(t;) dt;) 

+ r· J{F(t1 , t2 ,"', tk ) - C} 
k 

X II S;(t;) dt;. 
i=l 

The advantage of evaluating I this way is that 11 is, 
at worst, a product of k I-dimensional integrals. 
Furthermore, the "peakedness" of the integrand is 
caused by the S;, and so the relative contribution of 12 
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to I is small. The integrand of 12 is smoother, and 
consequently fewer integrand evaluations are neces­
sary for a given accuracy. The constant C can be 
chosen to minimize the contribution of 12 to I. The 
simplest way of doing this is to first evaluate I approxi­
mately, I ~ Ia' II is then computed accurately, and C 
is chosen to be C ~ Ialll; then 12 R:::! O. 

The integral transform trial functions used in 
previous calculations may be considered as first 
iterates in the iterated IT scheme. Calculations with 
higher iterates are now in progress. 
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In the theory of turbulence, the random position of a tagged point in a continuous fluid in turbulent 
motion, ret; w), is a vector-valued random function of time t ~ 0, WEn, where .0 is the supporting 
set of the underlying probability space (0, B, Pl. If u(r, t; w) is the Eulerian velocity field, then ret; w) 

satisfies the stochastic integral equation ret; w) = S~ u(r(Y; w), Y; w)dY, t ~ O. General conditions 
under which a random solution of this stochastic integral equation exists are given in the form of a theo. 
rem, and the theorem is proved using the concepts of admissibility with respect to an operator on a 
Banach space and fixed-point methods of functional analysis. 

1. INTRODUCTION 

A theoretical approach to the study of a continuous 
fluid in turbulent motion is virtually impossible except 
in a stochastic framework because the velocity fluc­
tuations are random. 

continuous fluid moving by a fixed position at any 
time t ~ 0 can be given. If the flow is turbulent, 
however, then the velocity is random, and the problem 
is to determine r(t; w) if the statistical properties of 
u(r(t; w), t; w) are known. 

Consider a tagged material point in a continuous 
fluid in turbulent motion. The position of the desig­
nated point at time t > 0 which started at time zero 
at some reference point, say, the origin, is a vector­
valued random variable r(t; w), WEn, where n is 
the supporting set of the underlying probability space 
(n, B, P). At position ret; w), the velocity of the point 
is given by the Eulerian velocity field u(r(t; w), t; w), 
which is a vector-valued random variable for each r 
and t ~ O. The Eulerian approach to describing flow 
in fluid mechanics is that the velocity of a point in a 

The position of the designated point is given by the 
stochastic integral equation 

where 

ret; w) = fu(r(Y; w), Y; w) dY, (Ll) 

(i) WEn, 
(ii) r(t; w) is the unknown vector-valued random 

function which gives the coordinates of the position 
of the tagged point in the fluid for each time t ~ 0, 

(iii) u(r(t; w), t; w) is the Eulerian velocity field 
specified in laboratory coordinates for each t ~ O. 
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consequently fewer integrand evaluations are neces­
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In Ref. 1, Lumley approached the problem by 
considering a discretized version of Eq. (1.1). Let 

cI>(r(Y; (0), t, Y; w) = u(r(Y; w), Y; w), ° ~ Y ~ t, 

= 0, Y> t. 

Then the discretized version of (Ll) that was con­
sidered by Lumleyl is given by 

n [Ik 
rn(ti ; w) =k~ Jtk_:p(r(Y; w), ti , Y; w) dY 

n 

-.:.. !cI>{r(tk ; (0), tiO tk ; W)~k' 
k~I 

where ° = to < tl < ... < tn = t is a partition of 
the interval [0, t], ti E (t i _ 1 , tHI), i = 1,2, ... , 
n - 1, and ~k = tk - t k- I • An extension of the Rice­
Kac theorem was used to find the probability that the 
discretized version of (1.1) has a solution in a small 
time interval. However, the convergence of the 
sequence rn to a solution r as n ~ 00, and hence as 
the partition of the interval [0, t] becomes finer, was 
not considered. 

The aim of this paper is to present some conditions 
under which an equation of the type (1.1) admits a 
random solution for each t ~ 0. By a random solution 
of (1.1) we shall mean the following: The random 
vector-valued function ret; (0) is a random solution of 
the stochastic integral equation (1.1) if, for each fixed 
t ~ 0, ret; w) is a vector random variable and satis­
fies Eq. (1.1) almost everywhere. We shall use here 
the concept of admissibility and some techniques 
similar to those developed by Tsokos.2 

2. PRELIMINARIES 

We shall consider the nonlinear stochastic integral 
equation (Ll) in the form 

ret; (0) = fcl>{r(Y; w), t, Y; w) dY, (2.1) 

where r(t; w) is the unknown vector-valued random 
variable, for each t ~ 0, and cI>(r(Y; w), t, Y; w) is 
the stochastic kernel which equals u(r(Y; w), Y; w), 
for ° ~ Y ~ t < 00, and 0, otherwise. 

We assume ret; w) to be a three-component vector­
valued continuous function from [0, 00) = R+ into 
the space Lp(n, B, P), 1 ~ P < 00, that is, for each 
t E R+, 

IIr(t; w)llp = (Llr(t; w)IP dP(w»)I/P < 00. 

Then, for each t E R+ and (0 En, r(t; (0) is a point in 
3-dimensionaI Euclidean space (r1(t; w), r2(t; w), 
r3(t; w», and 

Ir(t; (0)1 2 = ri(t; w) + r~(t; w) + ri(t; (0). 

We shall also assume that cI> is a function such that, 
for each fixed pair (t, Y) in the set 

~ = {(t, 1):0 ~ Y ~ t < oo}, 

cI>(r(Y; w), t, Y; w), WEn, is continuous in r, and 
for each r, WEn, cI>(r, t, Y; w) is a continuous 
function on ~. Then cI> is of the form «(Mr, t, Y; w), 

4>2(r, t, Y; w), 4>3(r, t, Y; w», a point in 3-dimen­
sional Euclidean space for each fixed r, (t, Y), and 
WEn, and for each fixed r, (t, 1) E~, we have 
cI>(r, t, Y; w) E Lp(n, B,P), with IcI>(r(Y; (0), t, Y; w)1 
defined as for ret; w) above. 

Let CvCR+, Lp(n, B, P» = C p be the space of all 
three-component vector-valued continuous functions 
from R+ into Lp(n, B, P) with the topology of uni­
form convergence on each compact interval [0, T], 
T> 0. That is, the sequence rn(t; w) E Cp converges 
to r(t; w) E Cp if and only if 

lim ( rlrn(t; (0) - ret; wW dP(w»)I/P = ° 
n-+ 00 Jo. 

uniformly on every interval [0, T]. 
Let D and E be a pair of Banach spaces such that 

D, E c C p' and suppose that T is a linear operator 
from C p into itself. 

Definition 2.1: The pair of Banach spaces (E, D) 
is said to be admissible with respect to T if and only 
if TE c D. 

Definition 2.2: The space D is said to be stronger 
than the space Cp if every convergent sequence in D 
with respect to its norm also converges in Cp ' but 
the converse is generally not true. 

We state the following lemma with respect to the 
Banach spaces D and E and the linear operator T 
above. 2 

Lemma 2.1: Suppose T is a continuous operator 
from Cp into itself. If the pair of Banach spaces D 
and E are stronger than Cp and if (E, D) is admissible 
with respect to T, then T is a continuous operator 
from E into D. 

It is known from a theorem of Banach3 that, since 
T is a continuous operator, it is bounded, and we can 
find a constant K > ° such that 

II (Tx)(t; w)IID ~ K IIx(t; w)IIE' 
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We shall now state a well-known theorem which is 
used extensively in the existence proofs for solutions 
of deterministic nonlinear integral equations.4 

Theorem 2.1 (Banach's Fixed-Point Theorem): If F 
is a contraction mapping from a subset W of a Banach 
space D into itself, then there exists a unique point 
x in W such that F(x) = x, that is, a unique fixed 
point of the operator F exists in W. 

The norm Ilr(t; w)IID is defined to be the supremum 
of Ilr(t; w)llp for t ~ O. 

3. AN EXISTENCE THEOREM 

We now consider Eq. (2.1) under the conditions 
stated in the following theorem. 

Theorem 3.1: If Eq. (2.1) satisfies the following 
conditions, then there exists a unique random solu­
tion of (2.1): 

(i) D and E are Banach spaces stronger than C p , 

and the pair (E, D) is admissible with respect to the 
operator T given by 

(ii) 

(Tr)(t; w) = frey; w) dY; 

~(r(Y; w), t, Y; (0) = u(r(Y; (0), Y; w), 

o ::; Y ::; t < 00, 

= 0, t < Y < 00, 

is a mapping from the set 

W = {ret; w):r(t; w) E D, Ilr(t; (O)IID ::; p} 

into the space E for some p ~ 0 satisfying 

Ilu(r(t; (0), t; (0) - u(s(t; w), t; w)IIE 

::; Allr(t; w) - set; w)IID 
for 

ret; w), s(t; w) E W, and A ~ 0 a const; 

(iii) Ilu(r(t; w), t; w)IIE ::; p/K, where K> 0 is the 
norm of T and AK < I. 

Proof Define the operator U from W into D by 

(Ur)(t; w) = fu(r(Y; w), Y; w) dY. 

Since u is continuous in r, U is a continuous mapping 
from Wto D. 

We must show that U(W) c W (inclusion property) 
and that U is a contraction mapping on W. We first 
show that U is a contraction mapping. Let ret; w) 
and set; w) be in W. Since the difference of two 
elements of a Banach space is in the Banach space, 

we have (Ur)(t; w) - (Us)(t; w) E D. Thus, 

IICUr)(t; w) - (Us)(t; w)IID 

= IIfu(r(Y; w), Y; w) dY 

- LU(S(Y; w), Y.; w) dylin 

= Ilf[u(r(Y; w), Y; w) - u(s(Y; w), Y; w)] dylin 

::; K Ilu(r(t; w), t; w) - u(s(t; w), t; w)IIE (3.1) 

from the remark following Lemma 2.1. Using con­
dition (ii) of the theorem, we have from inequality 
(3.1) 

II (Ur)(t; w) - (Us)(t; w)IID 

::; KAllr(t; w) - set; w)IID' 

Since KA < 1 by hypothesis, U is a contraction 
mapping on W. 

Now we must show inclusion. Assume that 
ret; w) E W. We have 

II(Ur)(t; w)IID = IIfu(r(Y; w), Y; w) dyliD 

::; K Ilu(r(t; w), t; w)IIE ::; P 

by condition (iii), so that (Ur)(t; w) E W. Hence, 
since ret; w) is arbitrary, U(W) C W. Therefore, by 
Banach's fixed-point theorem, there exists a unique 
element ret; w) in W such that 

(Ur)(t; w) = fu(r(Y; w), Y; w) dY = ret; w) 

for each t E R+ . 
Theorem 3.1 applies to any m-component vector­

valued functions as well. 

Remarks: The invariance of coordinate systems 
implies that the coordinate system used does not 
affect the above results. 5 The random vector function 
u(r, t; w) gives the random velocity of a tagged 
particle at the random position ret; w) at time t ~ O. 
That is, the components of u record the random rate 
of change of the coordinates of the tagged point at 
time t, ori(t; w)/ot, i = 1,2,3, and the length of 
u, lu(r, t; w)l, records the random speed of the tagged 
material point at time t ~ O. 

1 J. L. Lumley,J. Math. Phys. 3, 309 (1962). 
• C. P. Tsokos. Math. Systems Theory 3, 222 (1969). 
3 S. Banach, TMorie des operations Iineaires (Chelsea. New York. 

1963), 2nd ed. 
• P. M. Anselone, Nonlinear Integral Equations (U. of Wisconsin 

Press, Madison, 1964). 
• I. S. Sokolnikoff and R. M. Redheffer, Mathematics of PhYSics 

and Modern Engineering (McGraw-Hili, New York, 1966), 2nd ed. 
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The Poincare group is well known to imply a deep connection between the structure of space-time 
and particle properties. Searching for the analogous mathematical structure for curved space-time, we 
investigate the role of 10-parametric classes of coordinate systems in curved space-times. It is shown 
that all coordinate systems can be divided into 10-parametric classes according to the values of gil> 

and certain nontensorial combinations of its derivatives to an arbitrarily high order at a given point. It 
is also shown that 10-parametric classes arise naturally in Riemannian space-time when the maximum 
freedom in assigning numerical values to such nontensorial quantities is used. The set of transformations 
between members of a given class does not form a group, in general, but a novel mathematical structure 
(a "quasigroup"). New results concerning the transformations between normal coordinates and the 
analytiC characterization of geodesic Fermi coordinates are derived. 

1. INTRODUCTION 

The investigation of the representations of the 
Poincare groupl indicates a deep connection between 
the geometry of space-time and the properties of 
particles. The Poincare group itself is the group of 
motion in fiat space-time. It is indeed remarkable 
that the eigenvalues of its Casimir operators can be 
interpreted in terms of the masses and spins of 
particles. 

Since, however, space-time is on~y approximately 
fiat, the following problem naturally arises: Which 
mathematical structure forms the generalization of 
the Poincare group to curved space-time? 

The Poincare group is defined as the set of all 
transformations between coordinate systems belonging 
to a certain lO-parametric class of frames,2 namely, 
Cartesian frames. 3 The role of 100parametric sets of 
coordinate systems in fiat space-time is well under­
stood and usually connected with the degree of sym­
metry of fiat space-time. We begin the present work 
by a general investigation of the role of lO-parametric 
sets of coordinate systems in Riemannian space-time, 
in which no symmetry is assumed. 

Section 2 is devoted to classifications of all coordi­
nate systems in Riemannian space-time into 10-
parametric classes. It is shown that, without knowledge 
of the geometrical structure and degree of symmetry 
of space-time, it is always possible to divide all 
coordinate systems into lO-parametric classes accord­
ing to the values of the metric tensor and certain 
combinations of its derivatives of an arbitrarily high 
order at a given point. The idea behind these divisions 
is as follows (Sees. 2 and 3): Combinations of deriva­
tives of the metric tensor can be broken up into two 
groups, (1) those that form components of tensor and 

(2) all the other independent combinations. Tensor 
components cannot, in general, be chosen arbitrarily; 
if all components vanish in one frame, they vanish in 
all frames. The combinations belonging to group (2), 
however, can be specified at will and their values form 
a basis for a division of all coordinate systems into 
classes. All such classes turn out to be 10 parametric. 

Having made the distinction between tensorial 
quantities, which describe the geometrical structure, 
and the above-mentioned nontensorial expressions, 
one can formulate the physical significance of 10-
parametric sets offrames in Riemannian space-time as 
follows: lO-parametric classes arise naturally when the 
maximum freedom in assigning numerical values to 
nontensorial quantities is used. 

Section 4 deals with the set of all transformations 
between coordinate systems belonging to the same 
to-parametric class. Such a set is, of course, a subset 
of the Einstein group; however, in general it does not 
form a group. For example, if A, B, C, and Dare 
four frames belonging to the same class, t (A ~ B) 
and t (C ~ D) transformations from A to B and from 
C to D, respectively, then, if B = C, 

t (A ~ B) . t (C ~ D) = t (A ~ D). 

If, however, B"" C, then, in general, t (A ~ B) x 
t (C ~ D) is not a transformation between frames 
belonging to the same class but transforms A into a 
different class. 

The mathematical structure of these sets of trans­
formations is defined in Sec. 4 as a "quasigroup." A 
quasigroup does not satisfy the closure requirement 
of a group. It does satisfy, however, all the other 
requirements: An identity element is contained in it; 
together with every element it contains its inverse; 

213 
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and the associative law is satisfied. In the limit of 
flat space-time the closure requirement is met, and the 
quasigroup becomes identical with the Poincare group. 

As examples of quasigroups of transformations, the 
sets of transformations between normal coordinates 
and between geodesic Fermi coordinates are investi­
gated; the general expression for an infinitesimal 
transformation between two normal coordinates is 
derived (Sec. 4). 

In Appendix A we summarize some known results 
concerning Riemannian and normal coordinates 
which are used in this work. The material contained 
in Appendix B is essentially new: It contains an ana­
lytic characterization of geodesic Fermi coordinate 
systems in terms of nontensorial combinations of 
derivatives of g/lV to an arbitrarily high order at the 
origin. 

Let us. emphasize that all the results of this work 
are independent of the theory of general relativity. 
No assumptions were made concerning the equations 
which determine the curvature of space-time. 

All the theorems stated in this work will be subject 
to the same restrictions used by Veblen and Thomas 
in their classical paper!: Only analytic transforma­
tions between coordinate systems will be considered, 
and the metric tensor components are assumed to be 
analytic functions of the coordinates. These restric­
tions will not be restated in each theorem. For 
example, the expression "all coordinate systems," 
whenever used, refers only to coordinate systems 
satisfying these restrictions. 

The Einstein summation convention is used. 
Repeated Greek indices imply summation over 
1, 2, 3, 4; repeated Latin indices imply summation 
over 1,2,3. 

2. CLASSIFICATION OF COORDINATE ~YSTEMS 
TO to-PARAMETRIC CLASSES 

In flat space-time a lO-parametric class of coordi­
nate systems can be defined by a definite choice of the 
metric tensor at all points, e.g., 

g/lV = 'YJ/lV = (~ -! _ ~ ~) 
o 0 0-1 

(2.1) 

defines the lO-parametric set of Cartesian coordinates. 
In Riemannian space-time, the metric tensor 

cannot, in general, be given a priori at all points. g/lv 
is determined by (a) the geometrical structure and (b) 
the choice of coordinate system. Investigation of 
derivatives of g/lV to an arbitrarily high order at one 

point enables us to single out the dependence on the 
choice of frame. A complete determination of those 
combinations of derivatives which depend solely on 
choice of frame defines classifications of all coordi­
nate systems to lO-parametric sets. 

Mathematically, the simplest such classification, to 
be introduced in Theorem I, is based on a set of non­
tensorial expressions introduced by Veblen and 
Thomas.4 These expressions are defined as follows: 

r a - 1.p (..£.. r a - 2ra I'~ ) pyd - 3 oxd py ;Y Pd , 

r pYdE = iP (..£.. rpYd - 3rgYdr»<) 
aXE 

and, in general, 

rpYd· .. /lv = ~ P (a~v rpYd ... /l - (N - 1)rgYd ... 1tr%v), 

(2.2) 

where rpy are the Christoffel symbols of the second 
kind, P means that all terms obtained by cyclic 
permutations of the subscripts should be added 
together, and N is the number of subscripts. 

These expressions occur naturally if one considers 
the standard form of the equation of geodesics: 

d2
XX /l dxa dxP 
-- + r:p - - = o. (2.3) 

ds2 ds ds 

Differentiating Eqs. (2.3) successively with respect to 
s,we get, for all n ~ 3, 

dnx/l dxa1 dxan 

- +r/l -"'-=0 (2.4) dsn al···"''' ds ds . 

The following classification utilizes the expressions 
(2.2): 

Theorem 1: All coordinate systems can be divided 
into 10-parametric classes as follows: Each class is 
characterized by a set of constants a/lV, ft, 'JI = 
1, ... ,4, and b:l" .. "'n' ft, OCl, ••• , OCn = 1, ... , 4, 
n ~ 2, such that, for coordinate systems belonging to 
the class 

(2.5) 

(2.6) 

(a quantity with subscript 0 denotes the value of the 
quantity at the origin). 

Remarks: (1) From Eqs. (2.5) and (2.6) it follows 
that the a's and b's are completely symmetric in the 
subscripts and that 

det a/lV ¥:- 0, (2.7) 

(2.8) 
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(2) This theorem and analogous theorems and 
statements are not global. They refer to finite but 
sufficiently small regions of space-time. 

Proof: Let us establish a one-to-one corre­
spondence between the set of all coordinate systems 
satisfying Eqs. (2.5) and (2.6) and the set of all 
Riemannian coordinate systems satisfying Eq. (2.5). 

Let Xil be a given frame satisfying Eqs. (2.5) and 
(2.6). Consider a geodesic through its origin with 
directions given by 

~/l = (dX/l). 
ds 0 

(2.9) 

Expanding its Eqs. (2.3) in Taylor series, we get from 
Eqs.(2.4) 

Consider now the following transformation between 
the given coordinates xl' and another set of coordinates 
y/l: 

xl' = y/l + ! - ya, ... yan OC! 1 ( c:rx/l ) 
n~2 n! oya, ... oyan 0 

OC! 1 = y/l _! -(r/l ) yal. .. yan 
n~2 n! a,'''an 0 • 

(2.11) 

The Jacobian of the transformation is nonvanishing 
at the origin and, therefore, the transformation can be 
inverted. The inverse transformation is, in fact, given 
explicitly by 

00 

Y/l = xl' + "'(AI' ) xa1 ••• xan 
£. 1%1"'l%n 0 , 
n~2 

where the A-symbols are defined by 

Apy = r py , 
Apy~ = rpy~ + p(A:/ir~~), 

(2.12) 

Apy~. = rpy~. + p(A:/ir~~. + AZvqyr~. + A:/iyr~.), 
etc. (2.13) 

P means that all the terms obtained by cyclic permuta­
tion of the subscripts should be added together. 

From Eqs. (2.1 0) and (2.11) it follows that in the 
coordinate system y/l all geodesics through the origin 
have the form 

(2.14) 

By definition the y/l constitutes, therefore, a system of 
Riemannian coordinates (see Appendix A). Since the 
linear form of Eqs. (2.14) is conserved if and only if 

the coordinates undergo linear transformation, it 
follows that, given an arbitrary coordinate system xl', 
there exists one and only one Riemannian frame y/l 
such that the transformation between xl' and y/l 
reduces to the identity transformation in first order. 
We have shown, therefore, that corresponding to an 
arbitrary coordinate system xl' there exists one and 
only one Riemannian frame y/l having the same origin 
and direction of axes. The components of the metric 
tensor at the origin are the same in both frames. 

The transformation between xl' and y/l is given by 
Eqs. (2.11). From these equations it follows that xl' 
satisfies Eqs. (2.5) and (2.6) if and only if it is con­
nected with a Riemannian frame y/l satisfying Eqs. 
(2.5) by 

00 1 
X I' = y/l _ '" - b I' yal ... yan £. Ct:l'''an • 

n~2 n! 
(2.15) 

Therefore, if numerical values are assigned to all the 
a's and b's [Eqs. (2.5) and (2.6)], then Eqs. (2.15) 
establish a one-to-one correspondence between all 
Riemannian frames that satisfy Eqs. (2.5) and all 
coordinate systems satisfying Eqs. (2.5) and (2.6). 
From this one-to-one correspondence and Theorem 
A3 of Appendix A it follows that the class of coordi­
nate systems satisfying Eqs. (2.5) and (2.6) is 10 
parametric. We have thus established a division of-all 
coordinate systems into lO-parametric classes accord­
ing to the values of (g/lv)o and (r~,...a)o. QED 

The particular division thus established will be 
called the "normal division," because normal co­
ordinate systems are obtained from Eqs. (2.5) and 
(2.6) by setting 

(2.16) 

(2.17) 

The set of all normal frames is, therefore, one of the 
classes defined by this division. 

As pointed out in Appendix A, the set of expressions 

r:''''an' /-l, lXI' ••• , IXn = i, ... , 4, (2.18) 

is not a tensor and does not contain any subset that 
forms a tensor. Since the geometrical structure of 
space-time remains unspecified, the classification was 
achieved by assignment of numerical values to a set of 
nontensorial expressions. 

The normal division is based on the quantities (2.2). 
By different choices of nontensorial expressions it is 
possible to introduce different classification. In 
particular, "the Fermi division" is introduced in 
Theorem 2. This division might prove to be of greater 
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physical significance, since it contains as one of its 
classes the set of geodesic Fermi coordinates (see 
Appendix B).5 

Theorem 2: All coordinate systems can be divided 
into lO-parametric classes as follows: Each class is 
characterized by a set of numbers (J./l.V, b~~k), and 
bfI(.~t, k ~ 0, n ~ 3, fl, (J., fJ = 1, ... , 4, iI' .. " in = 
1, 2, 3, such that for coordinate systems belonging to 
the class 

(g/l..)O = a/l. V ' 

(P') - bP(O) a4 0 - a4 , 
(2.19) 

(2.20) 

The third-order b symbols will now be determined 
by the coefficients of the n = 3 term of Eq. (2.24), 
namely (a3x/l.jayalaya·ayaa)o: The bfI~~~3 are obtained 
simply from Eqs. (2.25); Eq. (2.21) for n = 3 is 
satisfied if and only if 

b~(O). = _ ( a3x/l. ) 
'1"'3 a/la/_a/a O· 

(2.27) 

To obtain the b~~l) symbols, consider the transforma­
tion of the Christoffel symbols of the second kind: 

(2.28) 

(2.21) (primed quantities referred to the y/l. coordinates, 
unprimed to the x/l.). Differentiating Eqs. (2.28) with 

(2.22) respect to y4, we obtain 

(2.23) 

Remarks: (1) From Eqs. (2.19)-(2.23) it follows 
that all the a's and b's are completely symmetric in the 
subscripts and the a's satisfy Eqs. (2.7) and (2.8). (2) 
The order of a b symbol is defined as the number 
of its subscripts plus k. For example, b~~O) are 
second-order b symbols, bfI~~:3 and b:~l) are third-order 
b symbols, etc. 

Proof: In analogy with the proof of Theorem 1, the 
present theorem will be proven by establishing a 
one-to-one correspondence between all coordinate 
systems that satisfy Eqs. (2.19)-(2.23) with particular 
values of the a's and the b's and Riemannian frames 
satisfying Eqs. (2.19) with the same values of a/l.V • 

In the course of proving Theorem 1 we showed 
that any frame xl' has one and only one corresponding 
Riemannian frame y/l., having the same origin and 
directions of axes. The transformation between them 
is the identity transformation up to terms of the first 
order: 

(2.24) 

By Eqs. (2.11) 

(ayaI~~~/l.aya1 = -W:1···a,.)O; (2.25) 

Eq[. (2.20) and (2.21) for n = 2 will be satisfied, 
therefore, ifand only if the second-order b symbols are 

(2.26) 

ax" axp axv a2x" axp 

r/l. ---+2r/l. ---
"p,v aya ayp ay4 "P ayaal ayp 

at the origin, since 

(~::1 = b~, (2.30) 

and, using Eq. (A2) and Eq. (2.1 I), we have 

(r:p,4)0 - 2 (a~:;»o (a~:;>1 
= (r~~,4)0 - (ayaO;;:alt (2.31) 

Thus, Eqs. (2.21) and (2.22) will be satisfied for 
k = 1 if and only if 

b:~l) = - (ay:;;:al)o + (r~~,4)0 

+ 2(a~:;»0 (a~:;>t (2.32) 

Proceeding by induction, one can express in this way 
all b symbols of the nth order in terms of the 
(okx/l./oya l • • 'oyak)o for k ~ n. For the bf:~~in the 
result is simply (2.25): 

prO) _ ( anx/l. ) 
bil .. ·i • - - a/I ... a/n o· (2.33) 

For the bfl('~!in with k ~ 1 the expression is more 
complicated. It is obtained by differentiating Eq. 
(2.28) n - 2 times and using the result at the origin. 
In analogy with (2.32) we obtain unique expressions. 
The one-to-one correspondence between the frames 
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x/l satisfying Eqs. (2.19)-(2.23) and the Riemannian 
coordinates satisfying Eqs. (2.19) with the same 
numbers aJJv is thus established. QED 

One difference between normal and Fermi divisions 
is apparent by comparing Eqs. (2.25) and (2.32): For 
the normal division the relation between the b symbols 
and the coefficients of the transformation is inde­
pendent. of the geometrical structure; for the Fermi 
division, however, the relation involves terms like 
(r~~.4)0 which will depend on the geometrical structure. 
This difference is of no real significance. It follows 
from the method of proof of Theorems 1 and 2: In 
both cases a one-to-one correspondence with Rie­
mannian frames was established. The above-mentioned 
difference stems from the fact that all Riemannian 
frames with a given value of (g"Jo belong to the same 
class according to the normal division but to different 
classes according to the Fermi division. 

It is shown in Appendix B that geodesic Fermi 
coordinates are characterized analytically by the 
equations 

(g/lV)o = rJJJv, (2.34) 

(r~4)0 = 0, (2.35) 

(r:~".in)O = 0, (2.36) 

__ «_4 _ 0 ekr/l ) 
(ox4)" 0 - , 

(2.37) 

(Ok:!~;~)O = o. (2.38) 

The set of all geodesic Fermi coordinates is, therefore, 
one of the classes defined by the Fermi division. 

In the two divisions considered it was shown that, 
without knowledge of the geometrical structure of 
space-time, it is possible to divide all coordinate 
systems into to-parametric classes by assigning 
numerical values to nontensorial expressions and that 
different choices lead to different divisions. Still 
different divisions can be constructed, of course, by 
other choices of nontensorial expressions. 

In both the normal and Fermi divisions the b 
symbols were uniquely determined by the coefficients 
(onxJJloY«l ... Oy«n)o. The general principle behind 
this unique determination can be explained as follows: 
Define as an nth-order quantity an expression which 
involves derivatives of g/lV up to nth order and is 
linear in the nth-order derivatives. A set of nth-order 
quantities is defined as independent if no lower-order 
quantity can be formed from them by a linear combi­
nation. Any set of independent quantities can be 
broken up into two sets: (1) those that differ from 

components of tensors only by lower-order quantities 
and (2) all the other independent combinations. Tensor 
components cannot, in general, be chosen arbitrarily: 
If all the components vanish in one frame, they vanish 
in all frames. The combinations belonging to set (2), 
however, can be specified at will, and their values form 
a basis for a division of all coordinate systems into 
classes. The b symbols. are such quantities. (It was 
pointed out in Appendices A and B that the b symbols 
of the normal and Fermi division do not contain 
subsets that form tensors.) 

The crucial point is this: The number of independent 
nth-order quantities of set (2) is equal to the number 
of (n + 2)-order derivatives on+2x llloy«1 ... oy«n+2 
which is 4· (n + 4)!/6 . (n + I)!. Now, the total 
number of nth-order derivatives of gllv is 10(n + 3)!1 
6 . n!; and indeed, the difference 

lO(n + 3)\ _ ±(n + 4)! = (n _ l)(n 2)(n 3) 
6 n! 6(n+l)! + + 

(2.39) 

is the number of independent quantities in set (1), i.e., 
the number of components in nth-order tensors. 

Examples: (i) n = 1: (n - l)(n + 2)(n + 3) = 0: 
No tensors can be built from gllv and its first-order 
derivatives; (ii) n = 2: (n - l)(n + 2)(n + 3) = 20: 
the number of independent components of the 
Riemann tensor; (iii) n = 3: (n - 1 )(n + 2)(n + 3) = 
60: the number of independent covariant derivatives 
of the Riemann tensor components (the Bianchi 
identities reduce this number from 80 to 60!), etc. 

Let us finally note the following feature of the 
divisions: In general, if the same transformations 
formula is applied to all elements of a given class, 
they will be mapped thereby into elements of several 
distinct classes. This is a consequence of the fact that 
the set of all transformations between elements of any 
class do not form a group. Indeed, in nonhomogeneous 
spaces application. of the same transformation for­
mulas to two coordinate systems with, say, different 
origins have, in general, different geometrical 
significance. The mathematical structure of the 
transformations between elements of the same class 
will be investigated in Sec. 4. 

3. THE PHYSICAL SIGNIFICANCE OF 10-
PARAMETRIC CLASSES OF COORDINATE 
SYSTEMS IN RIEMANNIAN SPACE-TIME 

A coordinate system is a correspondence between 
events in space-time and sets of four numbers 
(Xl, x2, x3, X4). Once such a correspondence is set up, 
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the metric tensor at all points of space-time is, in 
principle, measurable by a system of measurements 
that utilizes clocks and light signals.5 Therefore, the 
metric tensor and all its derivatives to an arbitrarily 
high-order at one point can be determined by an 
appropriate'set of measurements. Particular choices 
of division, as discussed in the previous section, 
correspond, therefore, to particular choices of sets of 
measurements. 

A particular class offrames of reference as discussed 
in the previous section is thus defined according to 
preassigned values of the chosen set of expressions. 
For example, the class of geodesic Fermi frames is 
defined by preassignment of the metric tensor at a 
particular point as 1}/lV and all expressions r l1 ... i ", 
okrt"'i.l(ox4)k at this point as zero (Appendix B). 
We use the term "preassigned" because this assign­
ment is made prior to determination of the geometrical 
structure. 

The physical significance of the results of the pre­
vious section is now formulated as follows: A complete 
knowledge of g/lV in a finite region around a chosen 
origin requires knowledge of (g/lv)o and of all its 
derivatives to an arbitrarily high order at the origin. 
Such knowledge is equivalent to (1) knowing all 
the components of all the tensors that can be formed 
from these derivatives and (2) knowing all the rest, 
i.e., (g/lv)o and a complete set of independent "non­
tensorial" expressions [such as (2.6) or (2.20)-(2.23)]. 
We realize now that we are free to preassign results of 
measurements of all the nontensorial quantities, and 
such preassignment of numerical values to all of them 
defines a lO-parametric class. In flat space-time the 
occurrence of 1O-parametric classes is linked with the 
degree of symmetry of space-time.· Here we realiz~ 
that JO-parametric classes arise naturally when the 
maximum freedom in preassigning results of measure­
ments of (g/lv)o and of these nontensorial quantities is 
used. 

It follows now that if gil v and aU its derivatives to an 
arbitrarily high order are measured at the origin of 
a given coordinate system, then a subset of these 
measurements, namely, (g/lv)o and the nontensorial 
quantities, merely determines to which lO-parametric 
class of a chosen division the frame belongs. 

In the flat space-time of special relativity it is 
possible to divide coordinate systems into lO-para­
metric classes by the direct physical significance of the 
coordinates. This is a consequence of the homogeneity 
of flat space-time. In an inhomogeneous curved 
space-time, coordinates do not possess simple metric 
meaning.6 It is, however, possible to understand the 
physical meaning of systems of coordinates as a whole, 

rather than the numerical values of the coordinates, 
in terms of the above-mentioned sets of measure­
ments. In the limit of flat space-time the two ways 
of characterizing frames of reference are equivalent. 
Since, however, the second way makes no reference 
to the geometry of space-time, it is directly general­
izable to curved space-time, the geometrical structure 
of which remains unspecified. 

4. QUASIGROUPS OF TRANSFORMATIONS 

Let c(P, A) be a Cartesian coordinate system in flat 
space-time with origin at P and directions of axes 
devoted collectively by A. Denote by p (P, A ~ P', 2') 
the transformation from c(P, A) to c(P',2'). 
p (P, A -+ P', A') belongs to the Poincare group. A 
priori, it depends on the 20 parameters needed to 
specify P, A, p', A'. Since, however, the space-time 
under consideration is homogeneous,p (P, A ~ P', A') 
depends only on the relative positions of the origin 
and the relative orientation of the axes. The 20 
parameters reduce to 10: The Poincare group is 10 
parametric. 

In the general case of transformations between 
coordinate systems belonging to the same 10-
parametric class in Riemannian space-time, this 
reduction does not occur, or occurs only partially: 
In general, the transformations depend on the initial 
and final positions and orientations separately, and 
the set of transformations does not form a group. 

We proceed now to calculate explicitly the trans­
formations belonging to one such set: the set of 
transformations between normal coordinate systems. 

The general infinitesimal transformation between 
two normal coordinate systems will be derived in two 
stages: 

(1) Let y/l and y'll be two normal coordinate 
systems with origins at P and P', such that 

(
Oyf/l) 
oy" 0 =o~. (4.1) 

The transformation between them will be derived as 
follows: From the equations of transformation of 
Christoffel symbols 

'::I 1(, '::I 'p oy'" _ o2yfll 
rf/l~~ = r" (4.2) 

"p oy" oyP "P oy" oy"oyP 

and from Eqs. (A2) and (4.1), it follows that 

(4.3) 
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By differentiating Eqs. (4.2) with respect to yY and 
summing over the cyclic permutations of oc, p, y, it 
likewise follows from Eqs. (A2) that 

( 
a3y'll ) 

ayaayPayY 1'= -(r~~y)p. (4.4) 

[The r symbols are defined by Eqs. (2.2).] Proceeding 
by induction, we obtain 

( 
any'll ) 

a a = -(r~~ ... an)l'· yal . .. yan p 
(4.5) 

Therefore, the transformation y'1l(y") is given by 

OCJ 1 
y'll(ya) = y'll(p) + yll _ .2 - (r~~"'an)pyal . .. yan. 

n=2 n! 
(4.6) 

Let us now specialize to the case of infinitesimal trans­
formation. Let 

(4.7) 

Then, to first order in bll , by Eqs. (A2) of Appendix A 

(r~~"'an)P = (r~;' .. an)P' + (r~i .. ·an.v)p,bV 

= (r~~ ... an.v)p,bV, 

where 11 denotes usual differentiation: 

r'll = ar~i"'an 
r%l'''an,V - oy'V 

(4.8) 

(4.9) 

By continuity we have, again up to first order in bll , 

(4.10) 

(4.11) 

Equations(4.6) become, for infinitesimal transforma­
tions, 

(4.12) 
where 

00 1 
DIl(ya) = ~ _ (rll ) yal ... yan 

v - k GU'''an.V 0 . 
n=2 n! 

(4.13) 

(2) In Appendix A (Theorem AI) we have shown 
that the set of transformations between normal 
coordinates with a fixed origin is identical with the 
homogeneous Lorentz group. An infinitesimal trans­
formation between two normal frames yll and y'll having 
the same origin is, therefore, of the form 

(4.14) 

where MaP are the 4 x 4 matrices which correspond 
to the infinitesimal transformations of the homogeneous 
Lorentz group and wap are the corresponding 
parameters. 7 

A general infinitesimal transformation is now 

obtained by a direct combination of Eqs. (4.12) and 
(4.14): 

y'll = yll _ all + !waP(MaP)~yp + D~(ya)av. (4.15) 

We proceed now to discuss the set of all trans­
formations between normal frames. This set N 
contains the homogeneous Lorentz group as a subset 
(Theorem AI, Appendix A), but N itself is different 
from the Poincare group. In fact, N does not form a 
group at all because Eqs.(4.12) depend not only on 
the infinitesimal parameters but also on the geometri­
cal structure [on the values of(r:l ... an.V)o]' 

Let us denote by n(P, A) a normal coordinate system 
with origin at P and directions of axes denoted 
collectively by A and by n (P, A-+- p', A') EN, the 
transformation from n(P, A) to n(P', A'). Let us 
define multiplication of transformations in the usual 
way: If ni == ni (Pi' Ai -+- P~ , A~) is the transformation 
yll = yIl(xa

) and n2 == n2 (P2, A2 -+- P~, A~) is the trans­
formation Z; = Z;(yll), then 

( 4.16) 

In contradistinction to the case of flat space, it now 
follows from (4.12) that for a curved space-time, if 
ni' n2 E N, ni' n2 E N is not necessarily true. If 
P; = P2, then ni . n2 EN. If, however, P; =F P2, then, 
in general, ni . n2 ¢ N. It follows then that the set N 
is not a group. We call the mathematical structure 
exemplified by N a "quasigroup," which we define as 
follows8

: 

Definition: A set A = {aa}, where oc stands for any 
number of discrete or continuous parameters, is a 
quasigroup if: 

(1) Corresponding to every element aa E A, 3 Ba :::;; A 
and 3 B~ :::;; A such that if b E Ba , the multiplication 
aa . b is defined and aa' b E A and if b E B~, then 
b . aa. is defined and b . a E A; 

(2) The associative law: for any a, b, C E A if a' b 
and b . c are defined, then (a· b) . c and a . (b' c) are 
also defined and 

(a·b)·c=a·(b·c); (4.17) 

(3) Existence of unit element: Among the elements 
of A there is one and only one element e which has 
the property that a' e and e . a are defined for all 
a EA and 

a' e = e' a = a; (4.18) 

(4) Existence of an inverse: Corresponding to 
every element a E A, 3 a' E Ba , B~ such that . 

a . a' = a' . a = e. (4.19) 
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Thus a quasigroup is different from a group in that 
the product of two elements is not always defined. It 
resembles a group in the sense that the associative law 
is satisfied whenever the products are defined, and in 
having a unit element and an inverse to every element. 

The quasigroup of transformation between normal 
frames contains the homogeneous Lorentz group. 
This is a consequence of the fact that transformations 
between normal coordinates with common origin 
depend only on the relative orientations of axes, (six 
parameters) not on the initial and final orientations 
separately. As far as the positions of origins are 
concerned, however, they do depend on the initial 
and final positions (eight parameters), not only on 
the relative positions. The quasigroup N is, therefore, 
14 parametric. In the limit of flat space-time, the 
separate dependence on initial and final positions 
degenerates into a dependence on the relative positions 
only, and N becomes identical with the Poincare 
group. 

As a second example of a quasigroup, consider the 
set G of transformation between geodesic Fermi 
coordinate systems g(P, J.). 

We define a one-to-one correspondence between 
the elements of the lO-parametric set of normal 
frames and the elements of the lO-parametric set of 
geodesic Fermi coordinates as 

g(P, J.) ~ n(P, J.), (4.20) 

where P and J. are the same for g and n, i.e., the normal 
and geodesic Fermi frames that correspond to each 
other have the same origin and directions of axes. 
The transformation between the corresponding frames 
x/l (geodesic Fermi) and y/l (normal) was derived in 
Sec. 2 [Eqs. (2.24) and (2.25)]: 

00 

X /l = y/l _ "'(r/l ) ya1 . .. yan 
~ Gtr"an 0 . 

n=2 
(4.21) 

The inverse transformation is given by Eq. (2.12). 
The transformation between two geodesic Fermi 

frames g(P, J.) and g(P', J.') can now be carried out ih 
three steps: 

g(P, J.) ~ n(P, J.) ~ n(P', X) ~ g(P', X), 

where the first and last steps are given by Eqs. (4.21) 
and (2.12), respectively, and the second step is given 
by successive infinitesimal transformations (4.15). It 
can be shown that the quasigroup G contains the 
I-dimensional group of time displacements and the 
rotation group, i.e., the transformation of time 
displacements of the origin depends only on the 
magnitude of displacement and the transformations 
corresponding to pure rotations depend only on the 

relative orientations of the axes. The quasigroup G 
is, therefore, 16 parametric. In the limit of flat space­
time it, too, becomes identical with the Poincare group. 
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APPENDIX A: RIEMANNIAN AND NORMAL 
COORDINATES 

A coordinate system is called Riemannian if all 
the geodesics through the origin can be written in the 
form 

(Al) 

where the ~/l are constants. It follows from Eqs.(2.1O) 
that a coordinate system is Riemannian if and only if 
for all n ~ 2, fl, 11.1' ••• , O(n = I, ... , 4, 

(A2) 

The r symbols were defined in Sec. 2. 
It follows from Eqs. (A2) that for any n ~ 2 the set 

of combinations of derivatives of the metric tensor 

{r~l"'aJ, fl, 0(1" •• ,O(n = 1,' .. ,4, 

does not form a tensor and does not contain any 
subset that forms a tensor. Indeed, a tensor that 
vanishes in one frame vanishes in all frames. None 
of the expressions r~l ... an is identically zero (i.e., 
vanishes irrespective of the geometrical structure and 
choice of coordinate system), and yet they all vanish 
in Riemannian frames. 

Consider an arbitrary Riemannian frame and denote 
its metric tensor at the origin by (g/lv)o, Consider the 
quadratic form (g/lv)oy/lyv. According to Sylvester's 
law of inertia there exists a linear transformation with 
real coefficients 

y'/l = e~ya, det le:1 ¢ 0, (A3) 

such that in the primed system of coordinates the 
coefficients of the quadratic form are ±b/lv ; the differ­
ence between the number of + and - along the diag­
onal being equal to the signature, i.e., -2: 

(A4) 

where 'f}/lV is defined in Eq. (2.1). 
The transformation (A3) does not effect the form 

of Eq. (AI). The y'/l coordinates are, therefore, 
Riemannian. 
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Riemannian coordinates that satisfy, in addition to 
Eqs. (A2), also 

(gI'V)O = 'YJI'V 

are called normal coordinates. 

(AS) 

Theorem AI: The set of all normal coordinate 
systems having the same origin is six parametric, and 
the set of transformations between them is identical 
with the homogeneous Lorentz group. 

Proof: Let yl' be normal coordinates. The most 
general transformation from yl' to another system of 
Riemannian coordinates y'1' with the same origin is 
given by Eqs. (A3). This is a consequence of the fact 
that the form of Eq. (AI) is conserved if and only if 
the coordinates undergo linear transformation. The 
coordinates y'1' are normal if and only if 

, oya oyP oya oyP 
(g!'v)o = 'YJjtV = (gaP)O oy'!' oy" = 'YJap oy'l' oy'v' (A6) 

These equations are equivalent to 

oy,a oy'P 
(g!'v)o = 'YJI'V = (g~/J) oyl' oyV = 1)a/JC:c~. (A7) 

The set of 4 x 4 matrices C with elements C; satis­
fying Eqs.(A7) is precisely the homogeneous Lorentz 
group. This group is six parametric, and each matrix C 
corresponds, according to Eqs. (A3), to one transfor­
mation between the given normal coordinates yl' 
and another normal frame y'1' having the same origin. 

QED 

Theorem Al dealt with the set of normal coordinates 
having the same origin. Since any point in space can 
be chosen as origin, the choice of the four coordinates 
of the origin allows for four additional parameters. 
We thus have the following theorem: 

Theorem A2: The set of all normal coordinates in 
space-time is 10 parametric. 

Geometrically, after a choice of origin (four param­
eters) has been made, the choice of the metric tensor 
at the origin specifies the relative directions of the 
four unit vectors in the directions of the coordinate 
axes. Equations (A5), for example, mean that this 
tetrad of unit vectors should be orthogonal (i.e., the 
directions of the coordinate axes in a normal coordi­
nate system are mutually perpendicular). The choice 
of (g"v)o does not specify, however, the absolute 
orientation of the tetrad in space: A rotation of the 
tetrad as a whole does not effect (g!'v)o' Since the 

group of rotations in 4 dimensions is six parametric 
(considering Lorentz transformations as complex 
rotations), the total number of parameters is 10. 
Theorem A2 is, therefore, readily generalized as 
follows: 

Theorem A3: Corresponding to any symmetric 
matrix a"v with signature -2 and nonvanishing 
determinant, there exists a 1O-parametric set of 
Riemannian coordinate systems such that 

(g"v)o = a"v' (AS) 

Proof: We have previously seen that, corresponding 
to any set of coefficients of a quadratic form with 
signature - 2 and nonvanishing determinant, there 
exists a transformation (A3) to a quadratic form with 
coefficients 'YJl'v' Since the Jacobian of the transforma­
tion is nonvanishing, the inverse transformation 
exists, and, when applied to normal coordinates, it 
transforms the metric tensor at the origin from 'YJI'I' 

to allv' 

In analogy with (A7) , the transformations (A3) 
that conserve (gllv)o satisfy 

(A9) 

This is a set of 10 equations for 16 unknowns. There­
fore, its real solutions are at most six parametric. 
Choose one particular transformation, c~ between 
normal coordinates and Riemannian coordinates 
satisfying Eqs. (AS). By successive application of an 
arbitrary homogeneous Lorentz transformation and 
the transformation c~, a correspondence between all 
normal frames and all Riemannian frames satisfying 
Eqs. (AS) is established. Since the former is six para­
metric (TheoremAI),so is the latter. Allowance of four 
parameters for choice of origin completes the proof. 

In Appendix B we shall make use of 3-dimensional 
normal coordinates in a spacelike hypersurface. 
In particular, we need the following: 

Theorem A4: The set of all normal frames in a 
3-dimensional hypersurface is six parametric. A normal 
frame is uniquely defined once an origin (three param­
eters) and three mutually perpendicular directions 
of axes (three parameters) have been chosen. 

This is the analog of Theorem A2 for 3- instead of 
4-dimensional space. 

APPENDIX B: GEODESIC FERMI COORDINATES 

Mathematically, the simplest IO-parametric set of 
coordinate systems is the set of all 4-dimensional 
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normal frames of reference. As Synge9 points out, 
however, 4-dimensional normal coordinates are 
unsatisfactory from a physical standpoint. The 
difficulty can be stated as follows: The time axis of a 
normal frame of reference is a timelike geodesic 
which satisfies 

(gI'V)O = 'YJI'V' 

[Cl,8, ,Lt)o = Cr:p)o = 0, 

(B1) 

(B2) 

where (g".)o[Cl,8,{l] and (r~p)oarethevalues of the metric 
tensor and the Christoffel symbols of the first and 
second kind at the origin (0, 0, 0, 0). The correspond­
ing equations are not satisfied, however, at the 
spatial origin at times other than t = 0, i.e., in general, 
for t ¥:. 0, 

gl'.(o, 0, 0, t) ¥:. 'YJI'V' 

r:p(o, 0, 0, t) ¥:. 0. 

(B3) 

(B4) 

Thus, in general, a normal coordinate system is not 
locally Cartesian at the spatial origin (except at time 
t = 0), and, more important, its properties around 
the spatial origin change with time. Physically, it 
corre~ponds, therefore, to an observer whose system 
of measurement changes continuously as time goes by. 

This difficulty comes about because time and space 
coordinates are treated in the same way in the defini­
tion of normal coordinates: Equations (A2) and (AS) 
are completely symmetrical in time and space variables. 
In reality, however, the nature of our measurements 
is such that the time axis is distinguished: The observer 
is constrained to move along it as he takes his measure­
ments. 

In contradistinction to normal coordinates, geo­
desic Fermi coordinates9 take this special role of the 
physical observer into consideration. They are 
defined as follows: 

Definition: A geodesic Fermi frame is a coordinate 
system: (i) It is locally Cartesian along all points of 
its time axis, i.e., 

gl'v(O, 0, 0, x4
) = 'YJI'V' - 00 < X4 < 00, (B5) 

r:p(O, 0, 0, x 4
) = 0, - 00 < X4 < 00. (B6) 

(ii) All its hypersurfaces X4 = c (for all real numbers c) 
are geodesic hypersurfaces10 perpendicular to the time 
axis, and the coordinates induced on them by setting 
X4 = care 3-dimensional normal coordinates. 

Theorem Bl: A geodesic Fermi frame is uniquely 
determined by choice of a point for its origin and of 
four mutually perpendicular directions at this point 
(three spacelike and one timelike) for directions of 
its axes. 

Proof' The following properties follow from the 
definition of quasi-Lorentz frames: 

(a) Its time axis is a geodesic because of Eqs. (B6)' 
the time axis ' 

Xi = 0, X4 = S (B7) 

satisfies the equations of geodesics (2.3). 
(b) The 3-dimensional.normal coordinates of any 

hypersurface X4 = C are such that their xl, x2, and x3 

directions at (0,0,0, c) are parallel to the Xl, x2 , and 
x3 directions at (0, 0, 0, 0) in Levi-Civita's sense of 
parallelism. 

Indeed, by the definition of parallel transfer, the 
change in the components of any vector RI', when 
displaced parallel to itself along an elementary path 
dxP, is given by 

dRP = -r~fJRIl dxp• (B8) 

It follows, therefore, from Eq. (B6) that the com­
ponents of the unit vectors in the Xl, X2, and x3 

directions do not change by a parallel displacement 
along the elementary path (0, 0, 0, dx4). 

Given an origin and four mutually perpendicular 
directions, it follows from (a) that the time axis is 
uniquely determined as the timelike geodesic in the 
given timelike direction. By requirement (ii) of the 
definition all the spacelike hypersurfaces X4 = care 
uniquely determined. From Theorem A4, the three 
given spacelike directions uniquely determine a 
normal frame of reference on the geodesic hyper­
surface X4 = ° and,by (b) and Theorem A4, once the 
normal coordinates on X4 = 0 are fixed, the normal 
coordinates on all surfaces X4 = C are uniquely 
determined. QED 

Corollary: The set of geodesic Fermi frames in 
space-time is 1 ° parametric. 

The following theorem amounts to an alternative 
definition of geodesic Fermi frames. It exhibits the 
similarities and diffe~ences between geodesic Fermi 
and normal coordinates. 

Theorem B2: A coordinate system is a geodesic 
frame if and only if it is locally Cartesian at all points 
of the time axis and for all real values of the num­
bers cl , c2 , c3, and c the lines 

Xi=CiS, i=1,2,3, x4 =O, (B9) 

where s is the invariant distance, are geodesiCS. 

Proof' We have to show that requirement (ii) of 
the definition of geodesic Fermi frames is satisfied if 
and only if all lines of the form (B9) are geodesics. 
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If (ii) is satisfied, then the hypersurface X4 = c is 
geodesic, and the 3-dimensional coordinate systems 
Xl, X2, x3 induced on it by the geodesic Fermi system 
by setting X4 = C are normal. By definition of 3-
dimensional normal frame all lines of the form 

Xi = CiS, i = 1,2,3, (BIO) 

are geodesics in the hypersurface. The additional 
requirement x4 = c insures that the lines belong to 
the hypersurface,and from the definition of geodesic 
hypersurface it follows that (B9) are geodesics in the 
4-dimensional space-time. 

Conversely, if in a given surface all lines satisfying 
Eqs.(BIO) are geodesics, the coordinate system on that 
surface is normal. By Eqs. (B9) all the lines generating 
any hypersurface X4 = C are geodesics, and all such 
hypersurfaces are, therefore, geodesics. QED 

The following theorem gives an analytic character­
ization of geodesic Fermi frames in terms of the metric 
tensor and certain combinations of its derivatives at 
the origin. 

Theorem B3: A system of coordinates is a geodesic 
Fermi frame if and only if the following conditions 
are met for all n ~ 2, k ~ 1, fl, 11, ot = 1, ... ,4 and 
il,···,in = 1,2,3: 

(g/lV)O = 'f) /lV' (B11) 

(r~4)0 = 0, (BI2) 

(r~".iJo = 0, (B13) 

--!! - ° (akr/l 
(aX4)k)0 - , 

(B14) 

e;~~~):n)o = 0. (BI5) 

Proof' We divide the proof into two parts. In part 
(I) we show that a system of coordinates is locally 
Cartesian at all points of the time axis if and only if 

(g/lV)O = 'f) /lV' 

(r~p)o = 0, 

(akr~p\ _ ° 
(ax4)kJo - , 

(BI6) 

(BI7) 

(BI8) 

for all k ~ I, fl, ot, fJ = 1, ... , 4. In part (2) we show 
that, for all real values of c1 , c2 , c3 , and c, the lines (B9) 
are geodesics if and only if Eqs. (B13) and (BI5) are 
satisfied for all k ~ 1, n ~ 2, fl = 1,"',4; i1,"', 
in = 1,2,3. Because of Theorem B2 this will complete 
the proof. 

(I) By definition a system is locally Cartesian at 
all points of the time axis if for all X4 

(BI9) 
and 

(B20) 

Let us show that Eqs. (BI9) and (B20) are equiva­
lent to Eqs. (B6)-(B8). First, expanding r~p(O, 0, 0, x 4) 

around the origin, 

/l 4 I' ~ 1 (akr~fJ) 4 k raP(O, 0, 0, x) = (rap)O + .£., - -4 (x), (B21) 
k=l k! ax 0 

we see that Eqs. (B20) are equivalent to Eqs. (BI7) 
and (BI8). In the continuation we use the equivalence 
of Eqs. (BI7) and (BI8) to 

(B22) 

(B23) 

This equivalence is proved as follows: At any point 
P all Christoffel symbols of the second kind vanish if 
and only if all Christoffel symbols of the first hand 
vanish (since any of these sets of symbols vanish if 
and only if all first-order derivatives of the metric 
tensor vanish at the point). Therefore, Eqs. (B20) 
hold if and only if 

[otfJ, flKO, 0, 0, x4
) 

~ 1 (ak[otfJ,fl]) 4k 
= [otfJ,fl]o +k~lk! (ax4)k o(x) = ° (B24) 

and Eqs. (B7) and (B8) are equivalent to Eqs. (B22) 
and (B23), respectively. 

We are now ready to show that Eqs. (BI9) and 
(B20) follow from (BI6)-(BI8) and vice versa: Ex­
panding g/lv(O, 0, 0, x4) around the origin, we get 

g/lvC0, 0, 0, x4
) 

= (g/lv)o + (ag
:
v
) i + ! .!.(ang

:: \ (x4r 
ax 0 n=2 n! (ax) Jo 

= 'f)'/lV + ([fl4, 11] + [114, flDox
4 

00 1 { an
-

l 
} + ~ -, (a 4)n-1 ([fl4, 11] + [114, fl]) (x4r. 

n-2 n. x 0 

(B25) 

If Eqs. (B16)-(BlS) are satisfied, it follows from Eqs. 
(B21), (B25), and the equivalence of (B22), (B23) to 
(BI7), (BI8) that Eqs. (B19) and (B20) are satisfied. 
Conversely, if Eqs. (BI9), (B20) hold, it follows from 
Eqs. (B21) that Eqs. (BI7) and (BI8) are true; Eqs. 
(BI6) too follow now because of the above-mentioned 
equivalence and Eqs. (B25). 
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(2) Consider the equations of geodesics (2.3). 
From these equations it follows that all lines (B9) are 
geodesics if and only if rf;cici vanish along them for 
ft = 1, .. '--, 4. Expanding rricici around the point 
(0,0,0, c) along a given line, we have 

rf;Cs)cic i = rfi(O, 0, 0, C)CiC i 

Now, 

00 1 dnr~. . . + 2 - --" (0,0,0, c)c·c's". (B26) 
n=1 n! dsn 

drfi Il k ) as = rij,kC , (B27 

drfi i i r ll i ile ds (0,0,0, c)c c = ii,k(O, 0, o,c~cc c. (B28) 

i, j, and k are dummy indices, and so we can permute 
them and add up all the permutations to getll 

drfi (0 ° ° ) i i rll (0 ° ° ) i i Ie (B29) -- " ,ccc = Hk ;, ,cccc. 
ds 

Thus a necessary and sufficient condition for the first 
term in the sum to vanish is 

rfiio, 0, 0, c) = 0. (B30) 

Similarly, for any other term 

(B31) 

dnrfi (0 ° ° ) i i _ rll (0 ° ° ) i i leI • •• Ie" ds" '" c c c - ii,kl'''k" , , ,c c c c . c 

- rll (0 ° ° ) i i kJ • •• k" - ijkl"'k" , , ,c c c c C. 

(B32) 

Thus all terms in the expression vanish if and only if, 
for all real values of c, ft = 1, ... ,4, n ~ 2, iI' ... , 
i,,=1,2,3, 

r~"'i,,(O, 0, 0, c) = 0. (B33) 

Expanding rf
1
'''i,,(0, 0, 0, c) around the origin, we 

have 

r ll (0 ° ° ) - (rll ) ~ .!. (Ok
r ::. ... in) Ie 11'''1" , , ,c - il'''1" 0 + k 4 C • 

k=lk! (OX)k 0 

(B34) 

Thus, Eqs. (B33)areequivalentto Eqs. (B13) and (B15). 
QED 

Corollary 1: For any n ~ 2, the set of combinations 
of derivations of the metric tensor, 

{
rll OATfl"'i"_k} 

il''' 1" , (OX')k ' ft = 1, ... ,4, 

i1 ,"',i,,=1,2,3, k=1,"',n-2, 

does not form a tensor and does not contain any 
subset that forms a tensor. 

This assertion .is proved in complete analogy with 
a similar assertion following Eqs. (A2). 

Corollary 2: If x ll are geodesic Fermi coordinates, 
then x' Il defined by 

X'i = xi, i = 1,2,3, x" = x' + c (B35) 

( c any real constant) are also geodesic Fermi 
coordinates. 

In the course of proving Theorem B3, we showed 
Eqs., (Bll)-(B13) to be equivalent to (BI9), (B20), 
and (823). If these equations are true for x ll , they are 
also true,for X'll defined by (B35). 

Corollary:3: In the limit of flat space-time, geodesic 
Fermi coordinates reduce to Cartesian frames. 

Since Cartesian frames are defined by Eqs. (2.1) at 
all points, Eqs. (Bll)-(BI5) are satisfied. 

An alternative analytic characterization of quasi­
Lorentz frames is given in the following. 

Theorem B4: Equations (BI3) and (BI5) are satis­
fied if and only if at all points 

r ll( 1 2 3 ') i i ° 1 4 ii X , X , X ,x X X = , ft = , ... , . 
Proof: Expand (B36) around (0,0,0, x'): 

(B36) 

(B37) 

The last step follows from the definition of the r 
symbols [Eqs.(2.2»), in analogy with the derivation of 
Eqs.(B31). Thus,Eqs. (B36) are satisfied if and only if 
for all n ~ 2 and all values of x' , 

r~"'i,,(O, 0, 0, x') = 0, ft = 1, ... ,4, 
i1 ,"', in = 1,2,3. (B38) 

Expanding now rf,."i,,(O, 0, 0, x') in Taylor's series 
around the origin,Eqs.(B38) are equivalent to 

(B39) 

(B40) 

for all k ~ 1, ft = 1, ... , 4, il ... in = 1, 2, 3. 
QED 
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The method used by Carmeli to obtain another form for the principal series of representations of the 
group SL(2, C) is extended to the complementary series of representations of that group. As a result, 
a new form for the complementary series of representations of SL(2, C) is obtained which describes 
the transformation law of an infinite set of numbers under the group translation in a way which is very 
similar, but as a generalization, to the way spinors appear in the finite-dimensional case. 

1. INTRODUCTION 

Recently, Carmeli1 has introduced an infinite set of 
quantities which are associated with the principal 
series of representations of the group SL(2, C) in a 
way which is very similar, but as a generalization, to 
the way spinors2 appear in describing the finite­
dimensional representations. The transformation law 
of these quantities,3 at the same time, defines a 
new form of the principal series of representations 
of SL(2, C). 

The principal series of representations, however, 
do not realize all irreducible unitary representations of 
the group SL(2, C). Rather, every irreducible unitary 
representation of the group SL(2, C) is unitarily 
equivalent to a representation of the principal series 
or the complementary series of representations.4 

In this paper we extend Carmeli's result to the 
complementary series of representations, thus estab­
lishing new forms for all irreducible unitary represen­
tations (to within unitary equivalence) of the group 
SL(2, C). 

In Sec. 2 we summarize the method used for the 
principal series of representations. In Sec. 3 we 
generalize the method to the complementary series of 
representations. The Appendix is devoted to detailed 
calculation of a normalization factor introduced in 
the text. 

2. SUMMARY OF PREVIOUS WORK 

In this section we discuss Carmeli'sl form for the 
principal series of representations. 

We denote by L~B(SU2) the set of all functions cfo(u), 
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where u E SUs, which are measurable and satisfy 
the conditions 

cp(yu) = ei8'1'cp(u), 

Jlcp(u)IS du < 00, 

where y E SUz is given by 

(2.1) 

(2.2) 

y= (
e-li'l' 0) 
o eli'l" 

(2.3) 

L~8(SUZ) provides a Hilbert space4.5 where the scalar 
product is defined by6 

(CP1' CPz) = J CP1(U)1>Z(u) duo (2.4) 

The principal series of representations is then given 
by the formula4.7 

VgCP(u) = [a. (ug)/a.(ug)]CP(ug) , (2.5) 
where 

g = (gU g12) 
g21 gzz 

is an element of the group SL(2, C) and a.(g) is a 
function given by 

a.(g) = g~; Ig22Iip-28-z. (2.6) 

Here p is a real number and 2s is an integer. 
Consider now all possiblt< systems of numbers cp!r" 

where m = -j, -j + 1, ... , j and j = lsi, lsi + 1, 
lsi + 2, ... , with the condition 

00 ; 

I (2j + 1) I Icp:"I Z < 00. (2.7) 
;=Isl m=-; 

The aggregate of all such systems cp!r, forms a Hilbert 
space, which we denote by lis, where the scalar 
product is defined by 

00 i 

I (2j + 1) I CP:"1p:,., (2.8) 
=1_1 m=-i 

for any two vectors Cp!r, and 1J'~ of lis. With each vector 
Cp!r, E 1:8 we associate the function 

00 ; 

cp(u) = L (2j + 1) 2 cp:"T:"(u), (2.9) 
;=1.1 m=-i 

where T;"(u) is the matrix element Tlm(u) of irreduc­
ible representation of SUz . Since' 

T:"(yu) = ei8'1'T:"(u), 

the function given by Eq. (2.9) belongs to the space 
L~8(SU2)' On the other hand, every function in 
L:8 (SUS) can be written in the form (2.9) since T:"(u) 
provide a complete orthogonal set. 5.8 The two spaces 
L:8(SUS) and 1:8 are, in fact, isometric where the 

transition from one space to the other can be made by 
means of the generalized Fourier transform 

cp:" = J cp(u)T;"(u) duo (2.10) 

Similarly to spinors which appear as coefficients in 
the polynomials of the space of representation, we 
see that the numbers cp'.,. appear as coefficients in the 
expansion given by Eq. (2.9) of the functions cp(u) of 
the space L~8(SUZ)' By means of the mapping (2.10), 
the operator Vg of the representation (2.5) may also 
be regarded as an operator in the space 1;8, whose 
explicit expression we find below. This expression 
also defines another form of the principal series of 
representations. 

Applying the operator Vg to the function cp(u) as 
given by Eq. (2.9), we obtain 

VgCP(u) = I (2j + 1) 2 cp~ a.(u~) T~(ug) (2.11) 
i m a.(ug) 

or 

VgCP(u) = 2 (2j + 1) I cp:" 2 (2j' + 1) 
j m if 

~ jj' j' 
X 4. V mm.(g; s, p)T m.(u), (2.12) 

m' 
where 

V mm,(g; s, p) = -- T m ug)T m.(u duo ;;' f a.(ug) i ( - i' ) 
a.(ug) 

(2.13) 

Accordingly, we obtain 

VgCP(u) = 2 (2j + 1) 2 cp;;'T;"(u), (2.14) 
j m 

where, using Eq. (2.12), we have 
ao ; 

cp;;': = 2 (2j + 1) 2 v;,:~,(g; s, p)cp:". (2.15) 
;=Isl m=-i 

Thus the operator Vg of the principal series of 
representations of SL(2, C) in the space l:s is the 
linear transformation determined by Eq. (2.15) de­
scribing the law of transformation of the quantities 
cp:", wherej = lsi, lsi + 1, lsi + 2,'" and m = -j, 
-j + 1, ... ,j. The matrices V::~,(g; s, p) are func­
tions of g E SL(2, C) and of p and s, where p is a real 
number and 2s is an integer. 

3. GENERALIZATION TO COMPLEMENTARY 
SERIES 

A. Complementary Series of Representations 
of SL(2, C) 

We denote by H the set of all bounded measurable 
functions cp(u) satisfying the condition 

cp(yu) = cp(u), (3.1) 

where again u is an element of SUs and y is given by 
(2.3). We, furthermore, introduce in H the scalar 
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product 

(1)1,1>2) = 7T II K(U'U,,-l)(Pt(U')cMu") du' du" (3.2) 

for 1>1 and 1>2 belonging to H. Here K(U'U"-l) is a 
function given by 

(3.3) 

where 0 < (j < 2 and the integral on the right-hand 
side of (3.2) converges absolutely. The space H can 
be shown4 to be a Euclidean space whose completion 
(which is a Hilbert space) we denote by H". 

The operators Vg of a representation of the com­
plementary series in the Hilbert space H" are then 
defined by the formula4.7 

Vg1>(u) = [oc(ug)/oc(ug)]1>(ug), (3.4) 

where 1> E Hand oc(g) is given by 

(3.5) 
0< (j < 2. 

B. Orthogonal Set in the Space H 

We now define a set of functions which provides an 
orthogonal basis in the space H. It is given by 

(3.6) 

where T6m(u) are matrix elements of the irreducible 
representations of the group SU2 and N j is a real 
normalization factor (see Appendix) whose value is 
given by 

Ni = ( 7T I K(u)T6o(U) du ri
. (3.7) 

Herem = -j, -j + 1,'" ,jandj = 0, 1,2,3,···. 
To show that t;" indeed provide an orthogonal 

basis in H, we calculate the scalar product 

(t~1' t!:.) 

= 7T II K(U'U"-1)t~1(U')t~iu") du' du" 

= 7TN· N ffK(U'U"-1)Ti1 (u') du'fi. (u") du" 11 is Om1 Om. • 

(3.8) 

By making the transition u' ~ u'u" in the above 
integral,6 one obtains 

(t~1' t~2) 

= 7TN ilN;.JJ K(u')Tt~.cu'u") du'Tt;..(u") du". 

Using the relation 
11 

Tt~1(U'U") = I T~Mu')T~m1(U") 
m=-il 

in the last integral, we obtain 

(t~1' t~2) = 7TNhNi'm~h f K(u')T~~(u') du' 

x I T~m1(u")t~;.a<u") du". (3.9) 

Using now the orthogonality relationS that the 
matrices Ti satisfy, we obtain 

which, by virtue of Eq. (3.7), gives 

(
til t iz ) _ !5hi2!5m1m2 

ml' ms - • 
2j1 + 1 

(3.11) 

C. New Form for the Complementary 
Series of Representations 

Consider now all possible systems of numbers 
"P~, where m = -j, -j + 1,' .. ,j and j = 0, 1,2, 
3, ... , with the condition 

; 

2 (2j + I)Ni2 2 1"P;"1 2 < 00. (3.12) 
i m=-j 

The aggregate of all such systems of numbers forms a 
Euclidean space which we denote by h, where the 
scalar product is defined by 

i 

2 (2j + I)Ni2 2 1>:""P:" (3.13) 
; m=-; 

for any two vectors 1>~ and "P~ of h. With each vector 
1>~ of h we associate the function 

cp(u) = I (2j + 1)Ni1 21>;"t:"(u), (3.14) 
i m 

where t;"(u) is given by Eq. (3.6). Since 

t;"(yu) = t;"(u), (3.15) 

it follows that the function (3.14) belongs to the space 
H. On the other hand, every function in H can be 
written in the form (3.14) since, as we have seen, t;" 
provide a complete9 orthogonal set in H. In fact, the 
two spaces Hand h are isometric, where the transition 
from one space to the other is made by means of 

1>;" = Ni (1), t;"). (3.16) 

A simple calculation also shows thatlO 

(1), "P) = 2 (2j + I)Ni2 21>;""P;'" (3.17) 
i m 

If we denote now by h" the completionll of the 
Euclidean space h, then the isometric mapping (3.16) 
of H on h can be extended in a unique way by conti­
nuity to an isometric mapping of Ha on ha. The 
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operators Vg of a representation of the complementary 
series in the space H" pass over into operators in the 
space h", which are also denoted by Vy and whose 
explicit expression we find below. This expression will 
also define a new form for the complementary series 
of representations. 

Applying the operator Vg to the function cp(u) 
written in the form (3.14), we obtain 

Vgcp(u) = ! (2j + I)Nil ! cp~ ot(u~) t~(ug) (3.18) 
i m ot(ug) 

or 

VgCP(u) = ! (2j + I)! CPi".! (2j' + I)N-/ 
j m j' 

x ! V:':;",(g; a)t~.(u), (3.19) 
m' 

where 

Vii' ( ) N i' fIK( , "-1) ot(u' g) .g·a =7T- uu --
mm' N ( '-) ; ot u g 

x t:"(u'g)f~.(u") du' duff. (3.20) 

Accordingly, Eq. (3.19) has the form 

Vgcp(u) = ! (2j + I)Njl ! CP~ti".(u), (3.21) 
i m 

where 
00 i 

cp~: = !(2j + 1) ! V:':;".(g; a)cpi".. (3.22) 
;=0 m=-; 

Hence we see that the operator Vg of the comple­
mentary series of representations of the group 
SL(2, C) in the space h" is the linear transformation 
determined by Eq. (3.22), describing the law of 
transformation of the quantities CP'r,., where m = -j, 
-j + I,'" ,j andj = 0, 1,2,3,···. The matrices 
V~;".(g; a) are functions of g E SL(2, C) and of a, 
where 0 < a < 2.12 

APPENDIX: THE NORMALIZATION 
FACTOR N; 

The normalization factor Ni was defined in Sec. 3 
by 

Nj2 = 7T J K(u) Tgo(u) du, (AI) 

where K(u) is a function of u E SU2 given. by 

(A2) 
and 0< a < 2. 

By calculating the scalar product of T60(U) with 
itself, we find 

(T60, Tgo) = _TT_ IK(U)Tgo(U) duo (A3) 
2j + 1 

Hence we have 

Nj2 = (2j + 1 )(Tbo, T60)' (A4) 

Now, the right-hand side of Eq. (A4) is positive. 
Hence N;2 > 0, and therefore N J is real. 

The evaluation of the integral in Eq. (AI) is straight­
forward. We have~ 

(( .:...- ),(.+ )'! 
Ti".n(u) = (_1)2i- m-n .J. m. ] m .) 

(j - n)! (j + n)! 

minU-m.i-n) (j - n) ( j + n ) 
X r=max~.-m-n)- r j _ m - r 

where 

(m) m! 
n =(m-n)!n!' 

Accordingly, we have 

T60(U) = (_1)2i ± (j)2(UllU22Y(U12U2l)J-r. 
r~O r 

Writing now the unitary matrix u in the form 

with 
lal 2 + Ibl 2 = I, 

we obtain for the integral in (AI) 

± (_I)3H(j)2J 1a I2r IbI2U
- r -

l
)+" duo 

r=O r 

(AS) 

(A6) 

(A7) 

(A8) 

(A9) 

(AID) 

We now express du in terms of some three real 
parameters. We take 

t = lal 2, () = arg a, A = arg b. (All) 
Then 

du = t7T-2 dt d() dA, 

and the integral in Eq. (AlO) becomes 

(AI2) 

_1 (ldt (2lT d() (2lTtr(1 _ t)i-r-l+!" dA. 
47T

2 Jo Jo Jo (A 13) 

We therefore obtain 

Nj2 = 7T ± (_l)3J-r(j)2 (lnI _ t)i-r-l+!" dt. (AI4) 
.=0 r Jo 

This last integral can easily be evaluated by parts; One 
obtains 

LInl -- t)'-r-l+!" dt 

r! 
=-----~-----

(j + !a - r) ... (j + !a - 1) 

x f(1 - t),+!,,-l dt 

r! 
(j + ta - r) ... (j + fa) 

r(j + fa - r) 
= r! r(j + ta + 1) . (A1S) 
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Using (AlS) in (A14), we finally obtain 

N-:2 = 7T f (_1)3i- r (j)2r ! ru + to' - r). (A16) 
I r=O r ru + to' + 1) 

• Supported in part by the Colgate Research Council and the 
Sloan Foundation. 

1 M. Carmeli, J. Math. Phys. 11, 1917 (1970). 
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a Just as in the spinor case, these quantities become functions of 

space-time when applied in physics. 
4 M. A. Naimark, Linear Representations of the Lorentz Group 

(Pergamon, New York, 1964). 
5 M. Carmeli, J. Math. Phys. 10,569 (1969). 
• The integrals in Eqs. (2.2) and (2.4) and throughout this paper 

are invariant integrals over the group SU •. We recall that the 
invariant integral satisfies the conditions 

I f(uul) du = f f(ul u) du = f feu) du, 

for any U1 E SUz, and 

I f(u-1) du = I feu) du, 

I f(u)du = L 

The concept of invariant integral is discussed in Ref. 4. It is also 
discussed in detail in J. D. Talman, Special Functions: A Group 
Theoretic Approach (Benjamin, New York, 1968),based on lectures 
by E. P. Wigner. 

7 We use the notation of Naimark according to which ug, appear­
ing in the representation formula (2.5) and throughout this paper, 
denotes an arbitrary matrix from the right coset ug (for details see 
Ref. 4). The explicit calculation of the unitary matrix ug is straight­
forward. If we denote ug by u'. then u' can be expressed in terms of 
the two matrices u and g. Denoting u' by 

, (rx' (J') u = _p; (i'" 

and u and g by 

u= (_~ ~), 
g = (gil g12), 

g21 g •• 
one then obtains 

detg = I, 

rx' = (-{Jgu + .xgu ) IAI-1 eiA, 

{J' = ({Jgll - .xglI) IAI-l eiA, 

IAI" = l{Jgu - rxgnl" + 1-{Jg18 + .xg"la. 
Accordingly, ug is determined by means of u and g up to an arbitrary 
phase factor exp (iA), where A is real. 

8 The functions T.{. .. (u) satisfy the orthogonality relation 

f T!.,,(u)Tt:,'n'(u) du = (2j + 1)-10il' Omm'O" .. ,. 

9 The orthogonal set of functions tin(u) is also complete in H. This 
can be seen by considering the irreducible unitary representation 
(3.4) of SL(2, C) in the Hilbert space H" as an infinite-dimensional 
unitary representation for the subgroup SUa and by decomposing 
it into its orthogonal sum of the finite-dimensional irreducible 
representations. If v is an element of SU" then Eq. (3.4) gives for 
the representation of SUI 

V'</>(u) = </>(uv), 

since one can put uv = uv in this case (see Ref. 4). Applying the 
last formula to t!.(u), we obtain 

Vvtin(u) = lin(UV) 

= NjT&m(uvl 
i 

= NJ ~ Ttm,(u)T!"'m(v) 
m'=-j 
j 

= ~ Tin'm{v)tin,(u). 
m'=-i 

Hence the operator Vv realizes a representation of SUI in the space 
Rj of the (2j + 1) functions t!. with -j ~ m ~ j, where the matrix 
elements of V. are T!n'm(v), The representation v ..... V. in the space 
of functions tin(u), m = -j, -j + 1, ... ,j, is irreducible and the 
t!. form a canonical basis in this space. Accordingly, the infinite­
dimensional representation of SUo in the space Hcr is decomposed 
into irreducible parts defined in the subspaces R j of t.!., where 
m = -j, -j + I, ...• j and j = 0, I, 2, 3,' , .. In other words, 
every function of H cr , and hence of H. can be represented in the 
form given by Eq. (3.14). 

1. IfV' is taken to be equal to </>. then Eq. (3.17) gives Plancherel's 
formula 

j 

(</>' </» = ~ (2j + lW;2 ~ 1</>:"12
• 

i m=-j 

11 Since h is a Euclidean space, then one can complete it, namely 
include it in a Hilbert space h". See, for example, Ref. 4; for a 
detailed proof, see L. A. Lyusternik and V. I. Sobolov, Elements of 
FunctiolU1[ Analysis (Moscow, 1951), and M. A. Naimark, Normed 
Rings (Noordhoff,Groningen, The Netherlands, 1959). 

U It is worthwhile to recall that the complementary series should 
be formally obtained from the principal series when one takes 
s = 0 and p = ia in the latter (see Naimark in Refs. 4 and 11). This 
fact can' also be seen for the new forms of representations of the 
series. By making the transition UN ..... uNu' in Eq. (3.20), one obtains 
for our matrices for the complementary series 

V!,1~,(g; a) = 77 Nj 'fJK(u·-1) rx(u'g) t!n(u'g)i!:.,(u·u') du' du". 
Nj rx(u'f) 

Using Eqs. (3.6) and 

we obtain 

V ,ii~,(g; a) 

= 77N;, ~ I K(u"-lir6n(U") dun f :~::~ T/'m(u'g)T .. ',(u')du'. 

By Eq. (3.4) the expression [oc(u'g)/rx(u'g)]T6m(U'g) is an element 
of the space H. Hence the second integral vanishes unless n = 0 
in which case we obtain, by Eqs. (2.13) and (2.6), • 

V!,!~,(g; a) = 77Ni~ f K{u"-l)TJ;(u") du"[V!.!~,(g; s, p)J.-o,p-.17, 

where V!,1~,(g; s, p) are Carmeli's matrices for the principal series. 
Using the fact that rin,,(u) = T~m(u-l) and the invariance property 
of our integrals, we obtain 

Vt.{~,(g; a) = 77N:, f K(u")Tt~(u") dIlH[Vt!~,(g; s, p»).-O,p-i17 

= [V;,:~,(g; s, p)],.o, P-l'" 

by Eq. (3.7). 
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The lattice Green's function for the body-centered cubic (bee) lattice 

11 

1(/) = .!.. III dx dy dz 
'ITa t ± i€ - cos X cos y cos z 

o 

is considered. With the use of the analytic continuation to complex value of 1 from Maradudin's result for 
1 > 1, the value of the real and imaginary parts of the integrall(t ± iE) for 0 < 1 < 1, € ~ 0, is obtained. 
The expressions valid for 1 ~ 00, 1 ;;:, 1, 1 ,..; 1, and t - 0 are given. They are useful for analyzing the 
nature of the singularity and for carrying out numerical calculations in all regions of t. 

The lattice Green's function!.2 for the body-centered 
cubic (bcc) lattice 

" 
I(t) = ~ flf dx dy dz (1) 

7r
3 t ± iE - cos X cos y cos z 

o 

is considered. It is real for t > 1 and complex for 
o < t < 1, E -+ O. Tables of the integral (1) are given 
in the literature.3- 8 Most of the methods of calculation 
are tedious or of slow convergence (except for t -+ (0), 
and the analytic properties of the integral are not yet 
sufficiently clear. In the present paper, it is shown that 
the principle of the analytic continuation to the 
complex value of t from Maradudin's result9 for t > 1 
gives the value of the real and the imaginary parts of 
l(t ± if::) for 0 < t < 1, E -+ O. The integral (1) is 
transformed into several forms in terms of hyper­
geometric functions. These expressions are transparent 
for analyzing the nature of the singularities at t = 0 
and t = 1, and are very simple for carrying out the 
numerical calculations in all regions of t, i.e., I ;;:, 0, 
f ,..; 1, t ;;:, 1, and 1-+ 00. 

For t > 1, the integral (1) is expressed as a power 
series in 1/ t 2 : 

I(t) = ~ ~ [l. r(n + !)J3(~)n 
t n-O 7fl n! t 

= !aF2(!'!'!; 1, 1; ~). (2) 
t 2 2 2 t 

Equation (2) is expressed9•1o in terms of the complete 
elliptic integral of the first kind K(k) in the case t > 1: 

I(t) = 1-147f-2K2(k), (3) 

k2 = ! [1 - (1 - t-2)l]. (3') 

value of t. Hence, by the principle of analytic continua­
tion, (3) is also valid when t approaches the real axis 
for 0 < t < 1 by indenting t = 1 from upper or lower 
part. For practical use, the following transformation 
is useful. 

Expressing the complete elliptic integral in terms of 
Gauss' hypergeometric function 2Fl and using the 
quadratic transformationsll for 2Fl' we have, 

I(t) = ,-1[2Fl(i,!; 1; ! - HI - t-2)l)]2, (4) 

2FIO, !; 1; ! - HI - 1-2)l) 

7fl 
- -- F (I I. ~. 1 1-2) - [rm]22 14, 4'~' -

l 
27r ( -2)l a a. 3. -2) ( 

- [r(i)]2 1 - 1 2FI(4, 4' 2,1 - t . 5) 

Both terms are real for t > 1. The first term is real, 
and the second term is imaginary for t < 1. The 
expression (5) is useful for t ;;:, 1. The expressions 
useful for t ,..; 1 and t ;;:, 0 will be obtained by trans­
forming (5): 

For 0 < t < 1, E -+ 0, 

Hereafter we consider the case of lower sign. 
Transforming ,FI ( ; z) into 2FI( 

z/(l - z», we have 

lhs of (5) 
7fl 1 

- -- t~ F (~ ~. ~. 1 t2) - [r(!)]2 2 1 4' 4'~' -

l 
+ i ~ tl (1 - t2)l 2Fl(!, 1; !; 1 - t2). 

[rei)] 
(6) 

In this paper the case I < 1 is considered. The proof of 
(3) shows that (3) is valid for III > 1 for complex The expression (6) is useful for t ,..; 1. 
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Taking the fact a + b = c into consideration, we 
transform 2Fl(a, b; c; z) into 

Eq. (6) = t[f ((1),,\2 
21T ,,=0 n! J 
x t2n[21p(n + 1) - 21p(n + H - log t2J 

+ i(l - t2)! I (1),,)2 
n=O n! 

x t2n[21p(n + 1) - 21p(n + !) - log t2]} 
(7) 

The expression (7) is useful for t ~ O. Substituting 
(7) into (4), we obtain the leading term for t - 0 from 
the term of n = O. Inserting 

1p(!) = -i1T - y - 3 log 2, (8) 

1p(!) = !1T - y - 3 Jog 2 (9) 

into (7), we have 

Re l(t) = (2/1T) ( -log 1 + 3 log 2) + 0(t2), (10) 

1m let) = (2/1T2)[( -log t + 3 log 2)2 - (t1T)2] 

+ 0(t2), (11) 

where the terms 0(t2) contain those of (2(log t)2 and 
12(1og t). 

Equation (0) shows that the state density for bcc 
diverges at the center of the band.12 

By using (5) and (6), the leading term at t......., 1 is 
shown to be 

Re I(t),....,., r l1T[r(!)J-4 + (2/1T)(l - 1-2)1, (12) 

Re I(t) = 0(1), (13) 

1m l(t) "" (2j1T)(1 - t 2)1. (14) 

The combined subroutine including Eqs. (2), (4), 
(5), (6), and (7) is very convenient and rapid for the 
calculation of the values of the real and the imaginary 
parts of the integral (1) for all values of t. 

The lattice Green's function to the antiferromagnet 
for bcc lattice was calculated by Walker et al.e It is to 
be noted that the Green's function for the antiferro-

magnet for bee is directly related to that for ferro­
magnet, since 

ik·r 1 ik·r 
~ h = - ~ _e __ (1 + ei .. <I+m+n'), (15) 

I: - I:k 21: I: - I:k 

where r = (/,111, n). For all even I, 111, and n, the lhs 
is equal to 

! ~ e
ik

•
r 

, 

I: I: - I:k 

and, for odd 1+ m + n, both hand sides of (15) are 
equal to zero. 

Recently Iwata13 expressed lrce (I> 3) and Ifce (I < 
-1), the lattice Green's function for the face-centered 
cubic (fcc) lattice, in terms of elliptic integrals. The 
method of the present paper can be applied to his 
results and Re llco (-1 < t < 3) and 1m I tcc (-1 < 
t < 3) can be obtained. In particular, the singularity 
at t '" -1 (at the edge of the band) is shown to be of 
the similar nature as that of bcc at t ,....., 0 (logarithmic 
divergence). 
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This paper deals with the class of conformally flat universes satisfying Einstein's field equations from 
a new point of view. It is shown that this class involves a scalar or pseudoscalar field that necessarily 
satisfies a meson-type field equation. This scalar gravity does not act at a distance;so to say, but supplies 
cohesive forces inside the source structure. Furthermore, the scalar field may involve spin-zero, massive 
quanta if quantized. Three exact solutions of this class are furnished here. 

1. INTRODUCTION 
"The general theory of relativity is bedevilled by 

the large number of unknown functions-the ten 
components of gii' There is little hope of getting 
physically interesting results without making drastic 
reduction in their number." 1 The usual way of 
reducing this number is to study some special uni­
verses admitting certain groups of motions. To 
minimize the number of unknown functions, one has 
to revert to the conformally fiat universes, either 
subjected to Einstein's equations or otherwise con­
strained. The non-Einstein scalar theories2 lack 
aestheticism as well as experimental validity. On the 
other hand, Einstein's equations of vacuum imposed 
on a conformally fiat universe turn it just fiat3 or 
destroy any gravity content. This very reason makes 
the scalar gravity act only inside the source structures, 
where it need not be trivial. Moreover, this scalar 
field satisfies a mesonlike equation which follows 
from the contraction of Einstein's equations. The 
pseudoscalar field may be produced from the scalar 
by multiplying the factor (_g)t. The quantization of 
the scalar gravity should be easier because the field 
equations can be expressed essentially in the 
Minkowskian metric. 

But the sailing is not smooth aU the way. The price 
of the drastic reduction of unknown functions is paid 
by encountering the highly overdetermined systems 
of equations. Moreover, in the gravity interpretation 
of mesons, a crude estimate shows that meson mass 
turns out to be about 104 times the acceptable value. 

In this paper we propose a modified field equation 
in terms of a Riemann tensor, which boils down to 
Einstein's equation in a conformaUy flat universe. 
Three examples of exact solutions of the modified 
equations are supplied here. The first example is 
essentially the de Sitter universe. The second one is 
an exact wave solution of the modified field equations 
where energy-momentum-stress tensor is borrowed 
from another scalar field. In the third example a 
static solution of the modified equations coupled with 
electromagnetism is derived. 

The author believes that gravity is structurally 
important in the very large or in the very small 
dimensions. He has especially been working on the 
application of gravity in the elementary particles.4 

This present attempt is towards isolating that com­
ponent in the ingredients of Einstein's theory which 
may be the most relevant in the formation of elemen­
tary structures. 

2. THE MODIFIED FIELD EQUATIONS 

First, the notations and definitions will be clarified. 
V4 denotes the 4-dimensional Riemannian manifold of 
events. An event x E V4 has the real coordinates Xi 

(Latin indices take the values 1, 2, 3, 4). The summa­
tion convention is followed. V4 has the index of 
inertia -2, i.e., the metric form <I> = giidxi dx j is 
reducible at a regular point to 

Units are chosen so that c = G = l. 
Now the modified field equations are stated, and 

the immediate consequences thereof are derived in 
the following theorem. 

Theorem 1,' Let the Riemann tensor satisfy in a 
regular domain D of V4 the following field equation: 

Rhiik = -41T(gh[kT j]i + giUTk]h + iTg"Ugk]i)' (2.1) 

where Tii is a differentiable tensor field with contrac­
tion T and square brackets denote antisymmetrization. 

Then the following implications are true: 
(i) Einstein's equations 

Rij - !gijR = 81TTii (2.2) 

hold in D. 
(ii) The domain D is conform ally fiat, i.e., 

gi; = CP2
'YJi;' 

(iii) The D is flat if, furthermore, T;; = 0. 

(iv) (a) Tu = Tii , (b) TJ: = 0, 

(c) T,U/k] - tgt[i~k] = 0, 
(2.3) 
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where the stroke and comma denote covariant and of the following: 
partial derivatives. (i) the inhomogeneous Lorentz group 

(v) Dc,b + tTTTOc,b = 0, (2.4) X'i = ai + l~ixi, 
where D is the usual d' Alembertian and 

Proof: (i) First and second contractions of (2.1) give 

(2.5) 

(ii) the scale transformations 

x" = AX\ 

(iii) the inversions with respect to a hypersphere 

x" = x'/(rlklxkxf). 

and 
R = 8TTT. 

From the above, (2.2) follows immediately. 
(ii) The conformal curvature tensor 

Chiik == Rhiik + (~gh[;Rk]i + gi[kRjJh) 

(2.6) The proof follows from Bianchi's theorem.6 

Comment: The field equations (2.9) together with 
the constraints (2.3) are an overdetermined system of 
equations. Because the number of unknown functions 

+ i-Rgh[kgi]i = 0, (2.7) 

in D by (2.1), (2.5), and (2.6). Therefore, the domain 
is conform ally flat. 5 

(iii) This consequence is obvious from (2.1). The 
physical implication is that this type of gravity dies 
outside the sources. 

(iv) By (2.2) the equations (a) and (b) are obvious. 
Now, from (2.7), one has 

C?iklh = 0. 

The above equation implies (2.3) by (2.1) and (2.7). 
It should be noted that by (iv) ail the identities of 
Riemann tensor are consistent with (2.1). 

(v) From (ii) one is allowed to put 

are 
1(¢) + 10(Tij) = 11, 

whereas the number of equations are 

10(2.9) + 20(2.3) = 30. 

Note that no coordinate conditions are allowable. 
In spite of this overdeterminism, some exact solutions 
are derived in the next section. 

3. EXACT SOLUTIONS OF THE MODIFIED 
FIELD EQUATIONS 

In the first example the following choice is made: 

(3.1 ) 

where K is a scalar, not necessarily constant. 
(2.8) Substituting (3.1) into (2.1), one has 

Plugging (2.8) into (2.6), one obtains (2.4). It should 
be noted that (2.4) is a meson-type equation where 
meson mass is related to the source mass. 

Theorem 2: The field equations 

c,b.i; + 1'YJ,jOc,b - 2c,b-1(c,bA.i - t'YJii'YJk1c,b.kc,b,t) 

= -4TTTiic,b, (2.9) 

together with (2.8) hold iff (2.1) does. 

Proof: Assume (2.9) and (2.8). By (2.8) 

Chiik = 0. (2.10) 

Now by (2.8) and (2.9), Eq. (2.5) is a consequence and, 
when (2.5) is substituted in (2.10), the field equation 
(2.1) immediately follows. The converse is obvious. 

(3.2) 

From the above it is evident that K must be a constant 
and V4 is a space 0f constant curvature. The Rieman­
nian metric form of V4 is 

ih _ .1.2 d j d i - (1 + 1 K k 1)-2 did; 
'l' - 'I' 'YJii X X - 4" 'YJklX X rJii X x. 

(3.3) 

The above form together with (3.\) satisfy all the Eqs. 
(2.1)-(2.9) and can be recognized as the classical 
de Sitter universe. 

For the second case, a real massless scalar field X 
is chosen and coupled to the modified gravity equa­
tions (2.9). So one has the following system of equa­
tions: 

gjiX1ji = c,b-2(OX + 2c,b-Vt X. kc,b.t) = 0, (3.4) 
Theorem 3: The most general coordinate transfor-

mations under which the field equations (2.9) together c,b.ii + 1rJii0 c,b - 2¢-\c,bA.i - t'YJiirJktc,b,k¢,{) 
with (2.8) are covariant are arbitrary compositions = -4TT X,jX,i¢' (3.5) 
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A special class of solutions is investigated by im­
posing a relationship 

X = K(r/». (3.6) 

With the above, (3.4) becomes 

Dr/> + ((In K')' + 2r/>-1]r/t r/>.1,r/>.t = 0, (3.7) 

where the prime denotes differentiation with respect 
to r/>. 

But the contraction of (3.5) yields 

Dr/> + trr(K')2'rJktr/>.kr/>.{r/> = 0. (3.8) 

Comparing (3.7) and (3.8), one has 

(In K')' + 2r/>-1 - lrr(K')2r/> = 0, (3.9) 

where rFr/>.kr/>,t is not necessarily zero. 
The general solution of (3.9) is 

X = K( r/» = ± (irr)! In 1[1 ± (1 ± a2r/>2)f]r/>-11 + b, 

(3.10) 
a and b being constants of integration. 

Substituting (3.10) into (3.5), one gets 

r/>.ij + (1 ± 2a2r/>2)(1 ± a2 r/>2r1r/>-1r/>,;r/>,i 

+ i'rJilor/> + r/>-lrFr/>.kr/>.,) = 0. (3.11) 

hypersurface of V4 • A space point x E Va has co­
ordinates xa (Greek indices take the values I, 2, 3). 
Static conditions on electro-gravity are the following: 

r/> = r/>(x), FaP = 0, F4a = -Fd = [A (x)la' 

(3.17) 

The modified field equations (2.9) and electrostatic 
equations are given by 

r/>.ap - 2 r/>-1 ( r/>.ar/>.p - lOapr/>.yr/>,y) 

= 4rr(A.«A.p - iOapA.yA)r/>-l, (3.18) 

(3.19) 

A.a .. = 0. (3.20) 

Note that both A (x) and r/>(x) are harmonic in E3 • 

Now a functional relationship will be imposed as 

r/> = Il>[A(x)]. 

From (3.19), the linear relationship7 

r/> = a + (4rr)fA, 

where a is a constant, follows immediately. 
Plugging (3.22) into (3.18), One obtains 

(3.21) 

(3.22) 

r/>.ocfl - 3r/>-1r/> ... r/>.fl + oocpr/>-lr/>y.r/>.y = 0. (3.23) 
Introducing another function 

[F(r/»]2 = a-4(1 ± a2r/>2), 
First solving for rx :;I: fl, then for rx = fl, one gets the 

(3.12) general solution 

where a :;I: 0, we reduce the equation 

Solving above for i :;I: j, one gets 

F = h(x1
) + h(x2

) + /s(XS) + ~(X4), (3.14) 

where the j;(Xi) are arbitrary functions of integration. 
Substituting (3.14) into (3.13) and solving for i = j 

case, one finally obtains 

F = rx'rJii(Xi + e)(xj + ~j), (3.15) 

where rx and ~i are constants of integration. 
In case the constant a in (3.10) and (3.11) is zero, 

one obtains the following solution: 

X = ±(!rr)t In Ir/>I, F = tr/>2 = rxixi, (3.16) 

where the rxi are constants of integration. 
Therefore, Eqs. (3.10), (3.12), and (3.15) or else 

Eqs. (3.16) furnish two exact wave solutions of the 
system (3.4) and (3.5). 

In the third example the combined scalar gravity 
and electromagnetic field equations are considered in 
a static setting. Now V3 denotes a time-constant 

r/> = -m/[(x1 - e)2 + (X2 - ~2)2 + (x3 _ ~3)2]f, 

(3.24) 

where m and ~a are constants of integration. Equa­
tions (3.24) and (3.22) furnish a static solution of the 
system (3.18), (3.19), and (3.20). 
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The Lee-Yang theorem for the zeros of the partition function of a ferromagnetic Ising model with real 
pair spin interactions is extended to general Ising models with complex many-spin interactions (satisfying 
appropriate "ferromagnetic" and spin inversion symmetry conditions). When many-spin interactions are 
present, all zeros lie on the imaginary Hz-axis for sufficiently low (but fixed) T, but, in general, some 
leave the imaginary axis as T -+ 00. The extended Ising theorem is used to prove the same result for a 
Heisenberg system of arbitrary spin with the real anisotropic pair interaction Hamiltonian 

;rei; = -(Ji~S:S; + Ji~S:S: + Ji~SJS:) 
in an arbitrary transverse field (HX, HY) under the "ferromagnetic" condition Ji: ~ IJi~1 and Ji

z
; ~ IJi~l. 

The analyticity of the limiting free energy of such a Heisenberg ferromagnet and the absence of a phase 
transition are thereby established for all (real) nonzero magnetic fields HZ. The Ising theorem is also 
applied to hydrogen-bonded ferroelectric models to prove, in particular, that the zeros for the KDP 
model lie on the imaginary electric field axis for all T below the transition temperature T,. 

1. INTRODUCTION AND SUMMARY 

In connection with their theory of phase transitions, 
Lee and Yangl discussed the zeros of the partition 
function ZN(z) of an Ising model of N spins as a 
function of the "activity" variable 

z = exp (-HZjkBT), (l.l) 

where HZ is the external magnetic field (in energy units). 
Under the condition that the Ising spins (O'i = ± 1) 
interact only through pairwise terms, -Ji/1 i O'j, which 
are ferromagnetic (Jij ;;::: 0), they proved that all zeros 
lie on the circle JzJ = 1 (or, equivalently, on the 
imaginary HZ-axis, Re {HZ} = 0). This result has been 
enormously useful in studying the existence and 
location of phase transitions in the Ising model and in 
discussing the analyticity of the limiting thermo­
dynamic free energy and its derivatives. The "circle" 
theorem has been extended by Asano,2 Suzuki,3 and, 
most completely, by Griffiths4 to ferromagnetic Ising 
models of arbitrarily high spin. Existing proofs, 
however, do not cover many-body spin interactions 
such as -Jiik!O'iO'jO'kO'!' 

Recently Heilmann and Lieb5 have proved a 
corresponding theorem for the monomer-dimer 
problem,6 which has, equally, led to many valuable 
conclusions. As a by-product of their proof, Heilmann 
and Lieb were able to prove the circle theorem for a 
ferromagneticaIIy coupled Heisenberg spin system at 
high enough temperatures. Earlier SuzukF had given a 
complementary proof for the Heisenberg model valid 
for low enough temperatures. In both of these cases 
the range of temperature (or T-l) for which the proofs 
are valid shrinks to zero in the thermodynamic limit. 

However, numerical studies by Kawabata and Suzuki8 

for several small Heisenberg systems indicated that 
the circle theorem was probably valid for all T. 
Indeed, very recently Asan09 has cqnsidered the general 
Heisenberg Hamiltonian 

:leN = -! (Jf;S;S~ + JfjS~S~ + JtjS~SD 
( ij) 

N N 
- 2 !(HfS~ + HrSD - 2W! /-ljS:, (1.2) 

i=1 j=1 

in the uniform cylindrically symmetric case, /-lj == I, 
Ji~ == Ji~' and H;'" == HI == O. In this case MN = 
m 2j Sj commutes with :leN' ,and so the partition 
function ZN(Z) is, as for an Ising model, still a poly­
nomial in z and Z-1. Asano then proves that all the 
zeros of ZN(z) lie on the circle JzJ = 1 provided that 

(1.3) 

The purpose of the present note is, first, to extend 
the circle theorem to Ising models with many-spin 
interactions; for a given set of many-spin interactions 
of finite order, our results (see Theorem 1 below) 
establish the circle theorem for all temperatures below 
a certain fixed temperature (independent of the total 
number of spins N); we also present counterexamples 
to show that the theorem should not apply at suffi­
ciently high temperatures. Secondly, we extend the 
circle theorem to the nonuniform, fully anisotropic 
general-spin Heisenberg model (fti -::;6- const, Jf; -::;6- JI; , 
H: -::;6- HJ -::;6- 0) under the "ferromagnetic" conditions 

fti ;;::: 0, Jtj ;;::: JJf;J, Jtj;;::: JJfjJ (1.4) 

(see Theorem 2 below). We remark that in the fully 
anisotropic case the partition function is not merely a 

235 
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polynomial in z and Z-l. (Our methods can also pro­
vide some rather limited results for Heisenberg models 
with many-spin interactions.) Lastly, we discuss the 
zeros of the partition function of a general class of 
hydrogen-bonded ferroelectric models in the variable 
z = exp (-&fkBT), where & is the imposed electric 
field. In particular, for the KDP model and its exten­
sion allowing "doubly ionized" vertices, we prove 
that the zeros lie on the circle Izl = 1 for T ~ Te , 

where Te is the transition temperature of the model. 
(We also make an observation on the class of exactly 
soluble extended ferroelectric models.) 

The techniques of analysis we use owe some 
important elements to Asano's recent work, but we 
believe our methods are simpler and more transparent 
(as well as leading to stronger results). The over-all 
strategy is as follows. First (from Asano) we intro­
duce a class of multivariable functions F(zl, ... , zn) 
which satisfy a certain "Lee-Yang condition" regard­
ing the location of their zeros. lO Ising spin functions 
!(al ,'" ,an) belong to the Lee-Yang class if their 
"transforms" (i.e., corresponding many-field parti­
tion functions) do. A sequence of lemmas establishes 
that products of spin functions of Lee-Yang type 
still belong to the class, so that, ultimately, the total 
Ising partition function is of Lee-Yang type provided 
that the partial spin interaction Hamiltonians, or 
corresponding individual Boltzmann factors, satisfy 
an appropriate condition. The'condition (see Theorem 
1) essentially states that the Boltzmann factor for the 
fully aligned states dominates the sum of factors for 
the other "disordered" states. 

To handle the Heisenberg model, the first step is to 
reduce its partition function, for the case S = t, to 
that of a suitable generalized Ising model. This is 
accomplished by using matrix identities of the type 

exp (A + B) = lim [I + n-l(A + B) + n-2C]n, 
n-+oo 

= lim [(I + n-lA)(1 + n-lBW. (1.5) 

The utility of such expressions was observed a little 
while ago by Ginibre,ll who, however, made principal 
use of Trotter's formula,l2 which retains A and B as 
exponents. Asan09 also used Trotter's formula, but 
the linear forms (l.5) offer some distinct advantages. 

On inserting intermediate states of definite Sf, 
S~, ... , S~ into the finite n products in (1.5), one 
obtains a partition function for an Ising lattice of 
more elaborate structure which contains explicit 4-
spin and 2-spin interactions (arising, respectively, 
from the Heisenberg coupling and the transverse 
fields). For large enough n the equivalent Ising models 
satisfy the conditions of Theorem 1 for all T provided 

that (1.4) holds. On taking the limit n ---+ 00, one 
concludes that all the zeros of the partition function 
Z N(HZ) of the general Heisenberg model described by 
(1.2) lie on the imaginary axis, Re {HZ} = O. [See 
Theorem 2 below.] The case of S > t is then discussed 
by Suzuki's method.7 

Finally, the ferroelectric models may be dealt with 
by formulating them in terms of Ising spin variables 
(in place of arrows drawn on bonds) and applying 
Theorem 1 directly. Theorem 1 is stated, discussed, 
and used to prove Theorem 2 and to discuss the 
ferroelectric models in the next section. The proof of 
Theorem 1 is postponed to Sec. 3. 

2. STATEMENTS AND DISCUSSION 

We first state Theorem 1 and discuss its significance 
for Ising models. We then prove Theorem 2 for 
Heisenberg models. Ferroelectric models are con­
sidered at the end of this section. 

Theorem 1: Lee-Yang Theorem for GeneraIized 
Ising Models 

Let aj = ± 1, j = 1, ... , N, be a set of Ising spin 
variables, and let 

qv.r(aj(r.l)' a j (r.2),· .. ,aj(r.v», 

r = 1, 2, ... , R ~ (~), 

be a set of (in general, complex-valued) "partial 
Boltzmann factors" for the subset of y (~ 2) spin 
variables {a'j(r.«)}«=I. .... v satisfying (for all y and r) 

(A) qv.r(-a(l), -a(2),"', -a(v» 

and 
= q:.r<a(J) , a(2),"', a(v» (2.1) 

(B) Iqv.,(l, 1, ... , 1)1 

~ 1 ! ... ! Iqv.r( a(1), ••. ,a(v»I. (2.2) 
alll=±l alv)=±l 

Then any zero z = , of the "total partition function" 

ZN(Z) 

in which the I'j are real, nonnegative coefficients, 
satisfies I" = 1. 

Remarks on Theorem 1 

(a) The partial Boltzmann factors may be written 

qv.r = exp [-pJev.,(aj(r.l) , ... , aj(r.v»] (2.4) 
with 

(2.5) 
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where .lev ... is a partial Hamiltonian for the rth subset 
of v spins. A partial Hamiltonian may, however, take 
the value + 00 or, more generally, may be complex. 
Condition (A) represents a generalized spin inversion 
symmetry of the (zero field) Hamiltonians. When the 
.lev ... are real, (A) implies that they may be expressed 
as sums of products of even numbers of spin variables; 
the qv ... ' when real, can be expressed similarly. 

(b) With z = exp (-(3HZ), as in (Ll), the total 
Ising Hamiltonian in field HZ may be written 

N 

.leN(O'I,···, O'N) = -WI /-t;0'; + I.lev .... (2.6) 
;=1 •• 1' 

Evidently the /-ti (~ 0) can be interpreted as local 
magnetic moments; alternatively, one may regard 
Ht = /-tjHZ as a local (inhomogeneous) magnetic 
field. 

(c) To explore the significance of condition (B), we 
may write 

Ee ... = Re {.lev . .(1, 1, ... , 1)} 

= Re {.lev.r (-1, -1,"', -1)} (2.7) 

and define I1Ev ... such that for all other, nonfully 
aligned, spin configurations we have 

Re {.levi 0'(1), ... , O'(v)} ~ Ee ... + I1Ev.... (2.8) 

Then it is easy to see that condition (B) is satisfied if, 
for all v and r, we have 

kBT ~ kBTv•1' = I1Ev•1'/ln (2V
-

1 
- 1). (2.9) 

When only pair interactions are present (v = 2, 
.le2 ... = -J1'O'1'.1(11',2) , this observation shows that the 
circle theorem is valid for all finite T provided 
Re {J .. } > 0 (so that I1E2•1' > 0). The theorem remains 
valid for T = 00 or for Re {J1'} = 0, by the continuity 
of the roots of ZN(z) = O. This result, of course, 
includes the original Lee-Yang theorem for ferro­
magnetic Ising models.1 

(d) When many-spin interactions (v > 2) are 
present, it is evident from (B) [or (2.9)] that the roots 
have been proved to lie on the unit circle only for 
sufficiently low T. However, investigation of the 
simplest case, namely, 

.lei 0'1' ... , 0'4) 

= -J(!O'iO'i + 1'0'10'20'30'4) - HZi, O'i , (2.10) 
(ii) i=1 

for J real and positive, reveals that the roots can 
indeed leave the unit circle when I' :F- 0 and T is 
sufficiently large. Specifically, in the special case I' = I, 
the roots will lie on the circle if and only if 

(2.11) 

The sufficiency condition (B) yields In 7 in place of 
In 2. Similarly, when I' = -1, the necessary and 
sufficient condition is 

(2.12) 

whereas condition (B) gives sufficiency, In (2 + ../7) 
replacing In 3. More generally, one can prove there 
are roots off the unit circle whenever 

kBT ~ 4J(l + y)/ln (l + ty) for I' > 0 

~ 2J(1 + Iyl)/In (1 - t 11'1-1) for I' < O. 

(2.13) 

Furthermore, if I' < -3, there are roots off the 
circle for all T; this borderline is also indicated by 
condition (B) or (2.9), in which we find I1E = 
6J(l - til'l) for I' c:::: -3. 

(e) The theorem may be extended directly to Ising 
models of higher spin with many-spin interactions by 
the method of Griffiths.4 

Heisenberg Model 

We turn now to the fully anisotropic Heisenberg 
model described by the Hamiltonian .leN (HZ) given in 
(1.2), which for S = t will be explicitly interpreted 
as a 2N X 2N matrix given in the representation of 
states, 10'1' (12' ••• , (1N), in which each S: is diagonal 
with eigenvalues to'i = ±t. The partition function 
is defined by 

ZN(W) = tr {exp [-(3.leN(HZ)]} = I ... 
0'1=±1 

I (0'1"'" O'NI exp [-(3JeN (W)] 10'1, ... , O'N)' 
O'N=±1 

(2.14) 

The exponential of a bounded operator A is usually 
defined by 

00 At 
exp (A) = I - , 

t=o t! 
(2.15) 

but it is straightforward to show that this is equivalent 
to 

exp (A) = lim (I + n-1A + n-2Cnt, (2.16) 
n-.oo 

provided that Cn remains uniformly bounded as 
n -+ 00. It follows from this that, if 

u v 
A(w) = !A .. + w!B", U, V < 00, (2.17) 

u=1 v=l 
then 

EnCw) = (fr (I + n-
1A .. ) n exp (Wn-1Bv)r (2.18) 

converges uniformly to exp A(w) on all compact sets 
in the complex w plane. 
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To utilize this formula, we rewrite the total Heisenberg Hamiltonian as 

N N 
:reN = L :rei; + L Jei - 2HZ L ft;SL (2.19) 

(i,;) i~l ;~l 

where 

:rei; = -(Jf;S;S~ + Jr;S~S~ + Jf;S~S~), 
:rei = -2(H;S; + H~SD. 

(2.20) 

(2.21 ) 

From (2.14) and (2.18) we then obtain 

ZN(H') = lim <t>N, .. (H"), (2.22) 
n-+ao 

where 

(2.23) 

in which 
Qi(n) = 1 - €Jei , 

Qi;(n) = 1 - €:rei ;, 

(2,24) 

(2.25) 
with 

€ = €(n) = {3/n = l/nkJlT. (2.26) 

(The implicit interchange of limit and summation is, of course, justified since the sum contains only finitely 
many terms; equally, the convergence to the limit remains uniform on compact sets in the complex 
HZ plane.) 

Now, by inserting sets of states I{O't,k}) ({O't.k}l, t = 0,1,'" , between each factor in the full product 
in (2.23), we obtain the expansion 

<t> N,n(H') 
N 

= L IT Zl'kIJO,k({O'o,dl Qll{O'l,k}) ({O'I,k}1 Q21{0'2,1<,l)'" <{O'N.k}1 Q121{O'N+1,k}) ({O'N+1,k} I QIsl{O'N+2,k}) 
{lJt,k)~±1 k~1 

N N 

X ... X IT Zl'kIJN",k ({O'N",k} I Qll{O'N"+l,k})' .. IT zl'kIJN"(n-l).k ({O'N"(n--l).k} I QI I {O'N"(n-l)+l.k}) .. " (2.27) 
k~1 k~1 

where now 
z = exp (€HZ) (2.28) 

and 
N"=N+N', (2.29) 

in which N' is the number of (i,j) pairs for which Jei ; 

does not vanish. The matrix elements of Q i and Qij 
simplify as follows: 

({O't,k}1 Q i I {O'U,k}) = Q2,i(O't,i' O'u,.) II c5(O't.k' O'U,k)' 
k*i 

(2.30) 

<{O't.k}1 Q;; I{O'u.,,}) 

= Q4,i;(O't.i' O't.;, O'''.i' O'u,;) II c5(O't,k' O'u,,,), (2.31) 
k*i.1 

whereb(O', 0") = t(1 + 0'0") is a Kronecker b function. 
Because of the () functions a substantial reduction of 
(2.27) occurs until, finally, <t> N,n is expressed as a sum 
over at most N(N + l)n Ising spins, which can be 
regarded as forming a lattice with periodic boundary 
conditions in the "n direction." (The exact structure 
of this lattice depends on the ordering chosen for the 
Qi;' which do not, of course, commute; however, 

the structure does not matter for our purposes.) The 
magnetic fields H' act only on n "layers" of N spins 
each, but can be formally extended to all spins at .k 

merely by defining coefficients ftt,k ~ 0 which vanish 
when appropriate. In addition to the Ising magnetic 
field, there are evidently pair interactions with partial 
Boltzmann factors which, by (2.24) and (2.30), can be 
written in an obvious matrix notation as 

( ') - [ 1 €(H; + iH~)J (232) 
Q2,i 0', 0' = €(H; _ iH~) ] ., 

Lastly, there are also four-spin interactions with 
partial Boltzmann factors 

o 
l-Elti 

€(Jf;+ Jfj) 

o 

o 
€(Jf;+J~;) 

l-Elfj 

o 

€(J;;-Jf;)] 
o 
o . 

1+ J:j 

(2.33) 
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In order to apply Theorem 1 to this Ising model, we 
must check conditions (A) and (B). Provided that 
Hf, Hf and Jfs, Jl;, and Ji

z
; are real, the spin 

inversion symmetry condition (A) is easily seen to be 
satisfied by (2.32) and (2.33). (Note that q2 will 
generally be complex.) For Q2,;' condition (8) yields 

1 > i + t€[(Hn + (H~)2]!. (2.34) 

Provided that T ~ 0 (and IHfl, IHfI < (0), this will 
always be valid for large enough n [see (2.26)]. With 
the same proviso (and IJ:il < 00), condition (8) with 
(2.33) yields 

2J:; ~ IJ~ + Jrsl + IJf; - If;I, 
which is easily seen to be equivalent to 

J:; ~ IJ;il and Jt; ~ IJfil. 

(2.35) 

(2.36) 

This condition is the most natural characterization of a 
ferromagnetic Heisenberg model with dominant z-z 
coupling. It now follows from Theorem 1 that all the 
zeros of <l>N,n(HZ) lie on the imaginary axis Re {HZ} = 
o whenever (2.36) is satisfied and all the fti are real and 
nonnegative. 

Finally, in order to take the limit n ---+ 00, we note 
that, by (2.27) and (2.28), the function <l>N,n(HZ) is 
entire analytic in HZ for all n, and recall that <l>N,n(HZ) 
converges uniformly to Z N(HZ). An appeal to Hur­
witz's theorem13 then ensures that any zeros of 
ZN(HZ) lie on the imaginary HZ axis. For S = t we 
have therefore proved Theorem 2. 

Theorem 2: Lee-Yang Theorem for Heisenberg 
Models 

All zeros of the partition function Z N(HZ) [defined 
in (2.14)], for the real Heisenberg Hamiltonian JeN 

defined in (2.19)-(2.21), lie on the imaginary HZ axis 
(Re {HZ} = 0) provided that 

(C) T > 0, ft; ~ 0, Jti ~ IJ;;I, and J:i ~ IJfil· 

To prove the theorem for general S, we may use the 
method of SuzukF to reduce a general spin Hamil­
tonian to one for spin t. For completeness, we outline 
the procedure here. Suppose, generally, that for spin S 
we have 

JeN = .'F({S~}), (I. = x, y, z, i = 1,2, ... , N. 
(2.37) 

Let sa. denote spin operators for S = ! and then extend 
JeN to a spin-! Hamiltonian of 2SN spins, namely 

Je~) = .'F(t~/~.t}). 
Now the operator 

(2.38) 

(
2S )2 

S~ = I IS':.t 
a. t=1 

(2,39) 

clearly commutes with Je~). Hence the eigenvectors of 
JeW can be classified by the set {S;} which specifies the 
eigenvalues S;(S; + 1) of the s~. If ~ Nis a projection 
operator onto the subspace· specified by S; = S for 
all i, we then have 

ZN = tr(S) [exp (-PJeN)] = tr(!) [~N exp (-pJe~»], 
(2.40) 

where tr(!) denotes a trace in the full spin-! space. 
Now a convenient form for the projection operator is 

N 

~ N = lim n exp {-tt1HS(S + 1) - Sm, 
~-+oo i=1 

= lim exp (-t1~{'J~», (2.41) 

where 
~-+ 00 

N 

{'J~) = I I (1 - St,t' St,.,), (2.42) 
i=)(1,,,) 

in which the second sum is over distinct pairs (t, u). 
Finally, we have 

ZN = Z~) = lim tr(!) {exp [-P(Je~) + ~{'J~»)J}, 
~ .... 00 

(2.43) 

which represents a spin-! Heisenberg Hamiltonian 
with additional pair interaction terms given by (2.42). 
To apply Theorem 1 to this Hamiltonian, we may 
include the additional terms in the exponential, or B 
factors in (2.18). The corresponding partial Boltzmann 
factors corresponding to (2.33) are then easily found 
to be 

o 
t(l - e-E~) 

t(i + e-E~) 
o 

~l (2.M) 

This expression clearly satisfies the spin-inversion 
symmetry condition (A) of Theorem 1; it also satisfies 
condition (B) (as an equality) for all ~, so that the 
limit; ---+ 00 in (2.43) may be taken when convenient. 
The pair terms in Jeit) arising from those in JeN still 
satisfy (A) and (B) provided that (2.36) holds. This 
completes the proof. 

Extensions of Theorem 2 

(a) The theorem is easily extended to pair interac­
tions of the form 

Jei ; = - L L J;fS~S~ , (I., {3 = x, y, z. (2.45) 
IX Ii 

In order that the corresponding (linearized) partial 
Boltzmann factor satisfy condition (A) of Theorem 1, 
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we must require, dropping the subscripts ij, that 

Jxx, J1I1I, pz and JXlI, JIIX be real, but 

Jxz, JIIZ, px, jZY be pure imaginary. (2.46) 

Condition (B) is then satisfied if 

2Jzz ~ [(Jxx _ JlIlI)2 + (]XII + JlIX)2]! 

+ [(Jxx + JIIII)2 + (JXY _ JYX)2]! 

+ 2(I]XzI 2 + IJlIzI2)! 

+ 2(1P"1 2 + IPlII2)!, (2.47) 

which may be compared with (2.35), to which it 
reduces when JItP == 0 for 0( :;6 (3. One should note, 
however, that if l"'", JY., P", or plI do not vanish but 
are imaginary, then the Hamiltonian will not be 
Hermitian. 

(b) If v-spin interactions are introduced into the 
Hamiltonian, they may be handled as above. How­
ever, 'for v > 2 they lead to difficulties since large n 
corresponds essentially to high T, and it will not, in 
general, be possible to satisfy condition (B) as n ---+ 00 

at fixed T. An exception arises if the many-spin in­
teractions involve only S: operators and commute with 
the rest of the Hamiltonian. The many-spin terms 
are then diagonal in the Ising interactions, and 
bounds valid for sufficiently low T can be obtained 
as in the pure Ising model. But this special case 
seems of limited interest. 

(c) Finally, we remark that, just as in the case of the 
Ising model, the restriction of all zeros to the imaginary 
HZ-axis ensures that the limiting thermodynamic free 
energy of any Heisenberg model satisfying the 
"ferromagnetic" condition (C) is analytic for HZ real 
and nonzero and hence that a phase transition can 
occur only in zero magnetic field. Techniques like 
those used in proving the theorems can also be used 
to prove Griffiths'14 first inequalities for Heisenberg 
spin correlation functions, namely, 

<S~Sj ... S~> ~ 0 for W ~ 0, (2.48) 

under condition (C). However, GallavottP5 has 
already given a proof under the more general con­
dition 

(D) Jti ~ IJZI or J:i ~ IJfil for all (i,j), (2.49) 

which is not expected to be sufficient to ensure that the 
zeros lie on the imaginary HZ axis. 

Ferroelectric Models 

Lattice models of ice and hydrogen-bonded 
ferroelectrics16 which have recently been the subject of 
significant numericaP7 and exact analysis18 are usually 
represented by drawing arrows on the bonds of an 

appropriate four-coordinated lattice. The "ice rules" 
then state that two arrows must point towards and 
two point away from each vertex. Different energies 
are assigned to the different configurations around a 
vertex, and a dipole moment is associated with each 
bond. In order to apply Theorem 1 to such models, 
we will, however, formulate them, and their generaliza­
tions, directly in terms ofIsing spins.l9 Specifically, we 
associate a spin variable (fi with the ith bond according 
to the following convention: 

"vertical" bonds: 

(f = + 1 <::> i upward arrow 

= - I <::> ! downward arrow; 

"horizontal" bonds: 

(f = + I <::> ---+ rightward arrow 

= - I <::> +- leftward arrow. 

Our discussion will, in fact, apply to an arbitrary 
tetrahedrally coordinated lattice so that "vertical" 
and "horizontal" have only the local significance of 
labeling the two pairs of bonds incident with a 
particular vertex. Table I lists all sixteen possible 
configurations about a vertex. The first six configura­
tions, with associated energies £1' £2, and £3, are the 
allowed ("neutral") ice configurations. We will, 
however, consider the most general inversion­
invariant model with eight distinct bond weights 
£1' ... , £8 as shown in Table I. This model evidently 
reduces to the standard ferroelectric models by letting 
£" ... , £8 approach + 00, in which limit the remain­
ing "ionized" configurations cannot occur. 

We suppose that the ith bond has an associated 
dipole moment iii and introduce an electric field & with 
"direction cosines" I" or Iv for horizontal or vertical 
bonds, respectively. We assume the Ii are nonnegative 
so that the field direction lies in the "first quadrant." 
The interaction of the system with the field is then 
described by the Hamiltonian 

N 

Jet; = -& 2Pi(fi with Pi = liiii ~ O. (2.50) 
i=1 

The model is now clearly equivalent to an Ising model 
in a field H == & with at most four-spin interactions: 
Specifically, a partial Hamiltonian 

Jer = -Jo - (J1(frl(fr2 + J 2(fr2(fra 

+ J·Pra(fr, + J,(fr,(frl + JS(frl(fra 

+ J s(fr2(fr,) - J 7(frl(fr2(fra(fr, (2.51) 

is associated with each vertex r of the original ferro­
electric lattice. Here the spins (frl' (fr2' (fra' and CTr4 

correspond to the four bonds incident at r. After some 
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TABLE I. List of all possible vertex configuratiorts and their weights for the general­
ized ferroelectric models. Plus spins correspond to upward and rightward pointing 
arrows; minus spins to downward and leftward pointing arrows. Configurations 
1-6 are the allowed "ice" configurations. Configurations 7 and 8 are "doubly 

ionized," while 9-16 are the eight "singly ionized" configurations. 

+ 
(1) + + (3) 

+ 
-

(2) - - (4) 
-

£1 

+ 
(9) + + (11) 

-

-
(10) - - (12) 

+ 
f, 

algebra one finds the explicit relations 

884 

8Jo = - !E;, 8J7 = !E; - !E; 
;=1 ;=5 ;=1 

and, with an obvious notation, 

8J1 = {2, 4, 6, 8} - {l, 3, 5, 7}, 

8J2 = {2, 3, 6, 7} - {I, 4,5, 8}, 

8J3 = {2, 4,5, 7} - {I, 3, 6, 8}, 

8J4 = {2, 3, 5, 8} - {I, 4, 6, 7}, 

8J5 = {3, 4, 7, 8} - {I, 2, 5, 6}, 

8J6 = {3, 4,5, 6} - {I, 2, 7, 8}, 

-
+ + -

+ - . -
+ 

£z 

-
+ + 

+ 

+ - -
-
£8 . 

(2.52) 

(2.53) 

where the bonds have been numbered in a clockwise 
sense around the vertex starting at the left-hand 
horizontal bond (see Table I). 

However, in order to apply Theorem 1, we do not 
actually need these explicit formulas since condition 
(8) is simply expressed by 

8 

e-fl£1 ~ !e-flEI. 
;=2 

(2.54) 

The inversion-symmetry condition (A) is clearly 
satisfied for real E j (see Table I). We will analyze the 
following four special cases. 

1. KDP Model 

In this case we have16- 18 

and 
(2.55) 

+ + 
(5) + - (7) - + - -

- -
(6) - + (8) + -

+ + 
£3 f, 

+ + 
(13) + - (15) - + 

+ + 
- -

(14) - + (16) + -
- -
£7 £8 

Condition (8) is then equivalent to 

T~ To, 

where by (2.54) we have 

To = E/kB In 2, 

(2.56) 

(2.57) 

which happens to be identical with the exact critical or 
phase transition temperature16- 18 of the model! Thus, 
for all temperatures below the critical temperature, the 
zeros of the partition function of the KDP model lie 
on the imaginary axis in the complex electric field 
plane. This interesting result might, perhaps, have 
been anticipated in view of the recent numerical 
studies by Katsura, Abe, and Ohkouchi20 on small 
planar KDP models. The numerical work shows that 
the zeros leave the imaginary axis above To (and, 
indeed, apparently, fill out a 2-dimensional region). 

2. Model with Double Ions 

Sutherland21 has recently discussed models with the 
energies 

El = -to, E2 = to, E3 = -E, 

E4 =-Y, ES="'=ES=+OO, (2.58) 

in which the "doubly ionized" configurations 7 and 8 
are allowed (all four arrows inwards or all four 
outwards). Condition (8) then reduces to T ~ T1 , 

where Tl is the root of 

2 sinh (lo/kBT1) = exp (E/kBT1) + exp (y/kBT1). 

(2.59) 
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On the other hand, by an argument somewhat similar 
to that used originally by Kramers and Wannier for 
the Ising model,22 Sutherland has argued that the 
transition temperature of the model when the original 
ferroelectric lattice is the plane square lattice should be 
just To = T1 . 21 Again we conclude that the zeros must 
lie on the imaginary 8·axis for all T ~ To. 

3. Reducible Models 

When J7 = 0, that is, by (2.52), when 

E1 + E2 + E3 + E4 = E5 + E6 + E7 + E8 , (2.60) 

the general model reduces to an Ising model with only 
pair interactions. The zeros of the partition function 
will then lie only on the imaginary 8-axis at all 
temperatures provided thatJi ;;:: 0 for i = 1, 2, ... , 6. 
By Eqs. (2.53) these conditions reduce to 

£"2 ~ £"5 + £"7 ~ £"3 + £"4' 

£"3 ~ £"5 + £"6 ~ £"2 + £"4' 

£"4 ~ £"6 + £"7 ~ £"2 + £"3' 

(2.61) 

where, £"8 is given by (2.60) and, with no loss of gener­
ality, we have set £"1 == O. These inequalities are not 
empty, for suppose E2' £"3' and E4 are the lengths of the 
sides of a triangle P zP aP 4 opposite the vertices P 2, P 3, 
and P 4, respectively. Then, if Q is any interior point 
of the triangle and £"5' £"6 , and £"7 are identified as the 
lengths of QP 4, QP 2, and Q P 3, respectively, it is 
easy to check that the inequalities (2.61) are satisfied. 
(In fact, there are many more solutions than these.) 

4. Exactly Soluble Models 

It is worthwhile pointing out that among the 
reducible models with J7 == 0 there is a rather large 
class of models which are exactly soluble (for zero 
field, 8 == 0) when the original ferroelectric lattice is 
planar (i.e., has no crossing bonds when drawn on a 
plane). Specifically, suppose that J5 == 0 or that J6 == 
0: In these cases the remaining spin interaction (or 
Ising lattice) bonds around a vertex form a square 
with one diagonal. This is a planar graph, and hence 
the corresponding Ising lattice is planar and its 
partition function can be calculated by the Pfaffian or 
dimer method.23 The condition J5 = J7 = 0 implies 

£"1 + £"2 = £"7 + £"8 and £"3 + £", = £"5 + £"6' (2.62) 

while J6 = J7 = 0 implies 

£"1 + E2 = £5 + £"6 and £"3 + £4 = £"7 + £"8' (2.63) 

When the original ferroelectric or bond lattice is a 
plane square lattice, the corresponding Ising spin 
lattice will be a triangular lattice with every row of, say, 
horizontal bonds missing. This lattice is a degenerate 

form of Utiyama's general checker board lattice,24 
and the exact partition function (and hence critical 
point) has been given long ago.24 

This class of soluble models includes those discussed 
recently by WUl9 as "extended antiferroelectric models" 
which were specified generally by 

and 
(2.64) 

When a = 1 and b = 2, we find J5 = J6 = J7 = 0; 
if the ferroelectric (bond) lattice is a plane square 
lattice, so is the corresponding Ising lattice, and hence 
kBTo = t£" In (1 + .J2) as found by WU.19 

3. CIRCLE THEOREM FOR GENERAL 
ISING MODELS 

In this section we provide the proof of Theorem 1 
which is stated in Sec. 2. As explained, we will intro­
duce a special Lee-Yang class of functions and 
proceed to develop their essential properties. To this 
end, let F(z1, ... , zn) denote a multinomial (of finite 
degree) in the complex variables Zi and z;-\ i = 
1,2, ... ,n. 

Definition 1: We say F is of Lee-Yang type with 
respect to the variable Zj and write F(zi , ... , z,:,) c Lj , 

provided that any root Zj = 'j({ziL"'J) of the equation 

F(zl,'" ,Zj"", zn) = 0 (3.1) 
satisfies 

(Lj ) I 'JI < 1 whenever IZil 2 1 for all i y!: j 
and IZkl > 1 for some k y!: j. 

With this definition we have 

Lemma 1: If F(z1,' .. , zn) c L j , then a root 
Zj = '1 of (3.1) satisfies 

(L~) "11 ~ 1 whenever IZil 2 1 for all i y!: j. 

(3.2) 

Proof: The lemma follows directly from Definition I 
and the continuity of the roots of a polynomial as 
functions of their coefficients, which are here con­
tinuous functions (in fact, multinomials) of the Zi for 
i y!: j. 

Lemma 2: The relation F(z1' ... , zn) c L j implies 
F(z1' ... , zn) c Lh for any h and hence for all 
h = 1,2,"', n. 

Proof: We may suppose h y!: j. By Definition 1, the 
conditions 

IZil ;;:: 1 for all i 
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and satisfies 
IZkl > 1 for some k ¢: j, h I~I = 1. (3.7) 

imply 
F(z1, ... , Zj, ... , zn) oF O. 

Hence any root Zk = ~k of 

F(z1' ... , Zk' ... , zn) = 0 

(3.3) This, of course, is just the type of result we wish to 
prove for the partition function [with Z given by (Ll)]. 
To discuss partitionlike functions, we introduce the 

(3.4) following definition. 
must satisfy 

(Lk)k*j "hi < 1 whenever IZil ~ 1 for all i ¢: h 

and IZkl > 1 for some k -:;l:- j, h. 

On the other hand, by Lemma 1, the conditions 

Iz~1 ~ 1 for all i, and IZil > 1, 

also imply (3.3) above. Hence any root ,,, of (3.4) 
must also satisfy 

(Lk)k=i I'hl < 1 whenever 

IZil ~ 1 for all i ¢: hand IZjl > 1. 

The properties (Lhh*j and (Lk)k=j together clearly 
imply (Lk ) as required to prove the lemma. 

Lee-Yang Class: As a consequence of this lemma, 
we may say a multinomial F(z1, ... , zn) is of Lee-
Yang type, or belongs to L, if F(Zl' ... ,zn) c L j for 
any j = 1, ... , n. This then implies F c L j for all j. 

Complement of Lee-Yang Class: For later use it is 
convenient to state here a characterization of a 
function which is not of Lee-Yang type, namely: 

If F(z1'···' zn) <j:: L, then there exists a zero 
F = 0 for a set of values Zi = z~O) (all i) and a partition 
{i1' i2 , ••• , iJl I iJl+1 , ••• , in} with 1 ~ fl ~ n of the 
set of indices {i} such that 

'z:~)' > 1 for ex ~ fl and Iz:;)1 = 1 for f3 > fl. 
(3.5) 

The validity of this characterization is evident on a 
moment's reflection. 

Now if F(zl , Z2' ... , zn) belongs to L, it is clear that 
the "reduced" functions 

F(zJl" ZJl2, Z2, ... , zn), F(zJll, zJls, ZJl2, Z4, ... , zn), ... 

also belong to L provided that the fli are real and 
nonnegative since the relations IZjl ~ 1, IZkl > 1, etc., 
will be preserved. An immediate consequence of 
Lemma 1 is then 

Lemma 3 (Lee-Yang zeros): If F(Zl,··· ,zn) c L 
and fl1' fl2, ••• , fln are real and nonnegative, then 
any root , of the equation 

(3.6) 

Definition 2: Transform of a Spin Function: If 
f(al' ... , an) is a function (in general, complex valued) 
of the n spin variables ai = ± I, then the (normalized) 
trace operation is defined by 

Tr {J} = 2-n ~ ... L I( a1 , ••• ,O"n), (3.8) 
I11=±1 I1n=±1 

and hence the transform F = 1 by 

F(Zl' ... , Zn) = Tr {U zi'f( aI' ... ,an)}. (3.9) 
.=1 

The transform is a multinomial in Zi and Z-;-1 and hence 

when 1 = F(z1, ... , zn) c L, 

we say f(O"l'···' an) c I, 

or, in words, thatfis a (spin) function of Lee-Yang 
type. 

We next need 

Lemma 4: If 1 = F(z1' ... , zn) c L, then the 
coefficient Aj of Zj in the expansion of F cannot vanish 
when IZil ~ 1 for all i ¢: j. 

Proof: Without loss of generality, supposej = 1 and, 
by (3.9), write 

F = A1z1 + BIZ!1. (3.10) 

Suppose, contrary to the lemma, that A 1(Z2, ... ,zn) 
vanishes when Zj = 'j' j = 2, ... ,n, with "jl ~ 1 
for all j ~ 2. Then the equation F(Zl) = 0 either has 
an infinite root (z11 = 0) or, in the event 

has an arbitrary root. In either case there is a root '1 
with "II > 1;, but this contradicts the datum Fe 
L == L 1 . Hence the hypothesis is false, and the lemma 
is proved. (Asano has proved this lemma in a some­
what different way.) 

We dignify the next two steps as propositions; they 
deal with the composition of spin functions and hence 
the building up of an Ising lattice by taking products 
and identifying spin variables. 

Proposition 1: If 

f(ao; a1, ... ,am) and g(a~ai,···, O"~) 
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belong to I, then so does 

h(a; a1, ... , 0:"., a{, ... , a~) 

=/(a; a1 ,"', am)g(a; a{,"', a~), (3.11) 

in which f and g have been linked by the contraction 
ao = a~ = a. 

Proof: By definition the transform of h is 

H(z; Zl,"', Zm' z{,"', z~) 

= iz Tr {II z~j II zti'h(l; ai' ... , a~)} 
i2:1 i2:1 

+ iz-1 Tr {II Z~i II zj<r;'h( -1; a1 , .•• , a~)}. 
;2:1 i2:1 

have IB~/A~I ::; 1. In addition, by the second part of 
(3.16), at least one of these ratios is strictly less than 
unity. Combining these results in (3.17) proves that I" < 1 under condition (3.16) and thereby completes 
the proof. 

Lastly, we will require: 

Proposition 2: Iff(a1,' .. , an) belongs to I, then so 
does 

in which the spin variables aj and ak have been 
contracted. 

(3.12) Proof: Without loss of generality, we may take 

But, on using (3.11), the traces factorize, and we j = 1 and k = 2. The transform g = G can then be 
obtain written 

(3.13) 
where 

Ao(zu ... , zm) = ! Tr {II zi:,f(1; a1 , ••• , am)} 
i2:1 

(3.14) 

is just the coefficient of Zo in 1 = F(zo, Zl' ••• , zm), 
while 

BOCZ1' .•• , zm) = t Tr {II z~i/(-1; a1 , ••. , am)} 
i2:1 

(3.15) 

is the coefficient of ZOI in J. Similarly A~(z{, ... , z~) 
and B~(z~,···, z~) are the coefficients of z~ and 
(Z~)-l in g. By Lemma 2, it is sufficient to prove that 
H(z; Zl,"', z~) is of Yang-Lee type with respect to 
the first variable z. To this end, we suppose that 

Iz;1 ~ 1, i ~ 1, and Iz;1 ~ 1, j ~ 1, 

IZkl > 1 for some k or Iz;1 > 1 for some i. 
(3.16) 

By Lemma 4 and the data f eland gel, it then 
follows that neither Ao nor A~ vanish. Consequently, 
by (3.13), any zero z = ~ of the equation H(z) = 0 
verifies 

1~12 = IBo/AoIIBMA~I. (3.17) 

In order to bound the ratios involved, consider the 
equation 

F(zo) = Aozo + BOZ01 = 0, 

with roots ~o satisfying 

(3.18) 

(3.19) 

Since f c I, it follows from (3.16) and Lemma 1 that 
"01 ::; 1 and hence that IBol Aol ::; 1. Similarly, we 

(3.21) 
where 

and 

A = t Tr {II Z~i/(1, 1, a3 , .•• ,an)} 
/2:3 

(3.22) 

D = t Tr {II z;i< -1, -1, as, ... ,an)}, (3.23) 
i2:3 

As before, it is sufficient to prove that G is of Lee­
Yang type with respect to z alone. Hence we suppose 
that 

IZil ~ 1, for all i ~ 3, 

Iz,,1 > 1, for some h ~ 3. (3.24) 

Now consider 

1= F(Zl"", zn) 

= iAz1Z2 + BZIZ;l + Cz11z2 + lDz11z2"\ (3.25) 

where the coefficients Band C arise from sums over 
f(1, -1, a3 ,"') and f(-I, 1, a3 ," '). Now since 
F c L, the coefficient of ZI' namely, iAz2 + Bz2"1 , 
cannot, by Lemma 4, vanish under (3.24) with IZ21 ~ 
1. Hence IA I > 2 lEI so that A itself cannot vanish. 
Furthermore, under condition (3.24), any root zo = 
~o of the reduced equation (ZI = Z2) 

F(zo, Zo; Z3' ••• , zn) = 0 (3.26) 
satisfies 

(3.27) 

From (3.25) we see that the product of all roots ~o 
is simply D/A, which is, hence, of modulus less than 
unity. Finally, under condition (3.24), any root z = ~ 
of the equation G(z) = 0 will by (3.21) hence satisfy 

1,,2 = ID/AI < 1. (3.28) 

This completes the proof. 
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These two propositions yield the following important corollary: 

Corollary: 1ff,.({O'ri}) C /for all r, then any product 

I I I I I 
/1(0'11,0'12,0'13,0'14' .• ')/2(0'21,0'22,0'23' .• ')/3(0'31,0'32,0'33' •.. ) ••• , 

LJ I I 

where variables joined by a line are contracted, will 
belong to 1 provided that all functions are linked by 
the contractions. 

We are now in a position to complete the proof of 
Theorem 1. First, we note that we may assume that 
all the partial Boltzmann factors qvAO'I"", O'v) 
entering the expression (2.3) for the total partition 
function ZN(Z) are linked. If the circle theorem is 
proved for one (linked) factor, it clearly holds for the 
total partition function. It thus follows from the 
corollary just stated, Definition 2, and Lemma 3 
that all zeros of ZN(z) will lie on Izi = 1 provided that 
the qv.,(O'(1) , ..• , O'(v) belong to 1 for all v and r. Our 
task is thus to prove this under conditions (A) and (B) 
of the theorem [see (2.l) and (2.2)]. 

Our first step (see also Ref. 1) is to prove by using 
(A) that 

(M) any root ZI = '1 of the equation 

q = Q(ZI' •.. ,zv) = Ai zi + BIz!l = 0, (3.29) 

with 

(3.30) 

satisfies I'll = 1. 

We write q for a typical factor qv.r' If Al does not 
vanish in (3.29), we have 

(3.31 ) 

As previously, we may express Al as 

Al = t Tr {Xl zfiq(l, 0'2"'" O'v)}, (3.32) 

and, since the 0'; are dummy variables under the trace, 
we have 

Al = 1 Tr {g z;-aiq(l, -0'2' ... ,-O'v)} (3.33) 

Then if q is spin-inversion invariant, as required by 
(A) [see (2.1)], and if (3.30) is satisfied so that Z~I = 
zi, we have 

Al = t Tr {II (zi)aiq*( -1, 0'2' ... , O'v)} = Bt. 
;2:2 

(3.34) 

It follows directly from (3.32) that I'll = I, as 
asserted in (M). 

Next we consider condition (B) of the theorem as a 
strict inequality. By using the spin inversion symmetry 
(A) and removing the term Iq(l, 1, ... , 1)1 from the 
right-hand side, the condition becomes 

(B)* Iq(1, 1, .. ',1)1 

> !"" !'lq(1, 0'2"'" O'v)l, (3.35) 
"2=±1 "v=±l 

where the primes denote the exclusion of the term 
0'2 = 0'3 = ... = O'n = + I. Now from (3.32) we find 

A I (Z2' ... , zv) 

= 2-vZ2Z3 ' •• Zv( q(l, 1,' .. , 1) 

+ !"" !' IT zjrIq(1, 0'2,"', O'v»). 
a.=±l av=±l j"2 2 

(3.36) 
If we notice that O'j - 1 ::;;; 0, it is clear that 

(N) under condition (B)", the coefficient Al of ZI in the 
expansion of Q(ZI' ... , zv) cannot vanish if IZil ~ 1 
for all i ~ 2. 

Finally, we will prove that this nonvanishing of Al 
implies that q belongs to 1 as required. To achieve this, 
we will suppose the contrary and obtain a contra­
diction to statement (M) above. Now if q does not 
belong to I, we conclude, from the characterization 
(3.5) given before, that there exists a solution of 

Q(Zl' Z2' ..• , Z.) = 0, (3.37) 

for a set of values Zi = z!O) such that, for fl (~ 1) of 
the indices i, we have Iz:O) I > 1 while for the remaining 
(v - fl) indices we have Izi(O)1 = 1. If fl = 1, we have 
an immediate contradiction to (M). Without loss of 
generality, we may, in fact, suppose that 

Iz~O)1 > 1, Iz~O)1 > 1, ... , Iz~O)1 > 1 

and Iz~O)1 = 1 for i > fl. (3.38) 

We will prove, following the technique of Lee and 
Yang, that there is another solution, Zi = Z~l\ of 
(2.37) with Al '#- 0 such that 

Izl°1 > 1, Iz~I)1 > 1, ... , IZ~~ll > 1 

and IZ~l)1 = 1 for i > fl - 1. (3.39) 
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To see this, hold fixed 

Z(o) - z(l) . .• z(o) - Z(ll 
2 - 2, '''-1 - "-1 

and z!o) = z~l) for i > ft, (3.40) 

and consider a root z" = '" of (3.37) as a function of 
Zl' When Zl = zl°), we have '" = z~O) with Iz~O)1 > 1. 
When Zl -- 00, the root '" must approach continuously 
a root ,~ of Al(z,,) = O. But we conclude from (N) 
above that any such root satisfies "~I < 1. By con­
tinuity it follows that there is some finite value Zl = 
zil ) such that '" = Z~l) has modulus unity and that 
Al (,,,) ¥: O. This establishes the new root set (3.39). 
By repeating the process, we ultimately obtain a root 
set of (3.37) such that Izi,t) I > 1, Iz~,t)1 = 1 (for all 
i ~ 2), and Al({Z~,t)}) ¥: 0; but this contradicts the 
statement (M). 

This completes the proof of Theorem 1 under 
condition (B)~, that is, condition (B) with a strict 
inequality. However, since the roots of ZN(Z) are 
continuous functions of the q • .rCal' ... , a.), we may 
relax (B)." to (B). 
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We investigate the ground state of a system of either fermions or bosons interacting in one dimension 
by a 2-body potential V(r) = glr2. In the thermodynamic limit, we determine the ground state energy 
and pair correlation function. 

INTRODUCTION 

We wish to investigate the properties of a 1-
dimensional N-body system interacting by the 2-body 
potential VCr) = g/r2. In particular, we shall be con­
cerned in this paper with the ground state in the 
thermodynamic limit: N -- 00 and volume L -- 00, 

with the density d = N/ L kept finite. The discussion 
shall be divided into sections as follows: Section I dis-

cusses the history and peculiarities of the g/r2 poten­
tial; Sec. II derives the ground state wavefunction for 
an N-body system contained in a weak harmonic well; 
Sec. III identifies the square of this wavefunction as 
identical with a probability distribution function 
familiar in the theory of random matrices, enabling 
many properties to be determined immediately by 
correspondence. 
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To see this, hold fixed 

Z(o) - z(l) . .• z(o) - Z(ll 
2 - 2, '''-1 - "-1 

and z!o) = z~l) for i > ft, (3.40) 

and consider a root z" = '" of (3.37) as a function of 
Zl' When Zl = zl°), we have '" = z~O) with Iz~O)1 > 1. 
When Zl -- 00, the root '" must approach continuously 
a root ,~ of Al(z,,) = O. But we conclude from (N) 
above that any such root satisfies "~I < 1. By con­
tinuity it follows that there is some finite value Zl = 
zil ) such that '" = Z~l) has modulus unity and that 
Al (,,,) ¥: O. This establishes the new root set (3.39). 
By repeating the process, we ultimately obtain a root 
set of (3.37) such that Izi,t) I > 1, Iz~,t)1 = 1 (for all 
i ~ 2), and Al({Z~,t)}) ¥: 0; but this contradicts the 
statement (M). 

This completes the proof of Theorem 1 under 
condition (B)~, that is, condition (B) with a strict 
inequality. However, since the roots of ZN(Z) are 
continuous functions of the q • .rCal' ... , a.), we may 
relax (B)." to (B). 
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We investigate the ground state of a system of either fermions or bosons interacting in one dimension 
by a 2-body potential V(r) = glr2. In the thermodynamic limit, we determine the ground state energy 
and pair correlation function. 

INTRODUCTION 

We wish to investigate the properties of a 1-
dimensional N-body system interacting by the 2-body 
potential VCr) = g/r2. In particular, we shall be con­
cerned in this paper with the ground state in the 
thermodynamic limit: N -- 00 and volume L -- 00, 

with the density d = N/ L kept finite. The discussion 
shall be divided into sections as follows: Section I dis-

cusses the history and peculiarities of the g/r2 poten­
tial; Sec. II derives the ground state wavefunction for 
an N-body system contained in a weak harmonic well; 
Sec. III identifies the square of this wavefunction as 
identical with a probability distribution function 
familiar in the theory of random matrices, enabling 
many properties to be determined immediately by 
correspondence. 
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I. HISTORY AND PECULIARITIES OF THE 
g/r2 POTENTIAL 

Several recent papers have been concerned with 
systems of particles interacting in one dimension by a 
two-body potential VCr) = g/r2• One line of investiga­
tion proceeds from Dyson's work1 on phase transitions 
of classical systems in one dimension, which indicates 
that systems with attractive potentials falling off slower 
than l/r2 have phase transitions, while attractive 
potentials falling off faster than l/r2 do not. Thus one 
is particularly interested in whether an attractive l/r 2 

potential has a phase transition. As this paper deals 
only with the zero temperature problem, it throws no 
light on the occurrence of phase transitions; finite 
temperature properties are to be discussed in· a later 
paper. Dyson's work is recalled to emphasize that 
g/r 2 in one dimension is a particularly interesting 
choice. 

Second, Calogero,2 treating the corresponding 
quantum system, solved exactly the 3-body problem 
and N-body ground state problem in both free space 
and with mutual harmonic interactions. Calogero's 
work does not allow one to determine the behavior of 
the g/r2 system in the thermodynamic limit. However, 
our ground state wavefunction is very similar to that 
of Calogero; the difference in this investigation and 
Calogero's is best described as one of viewpoint. It is 
this shift in viewpoint which allows us to proceed 
further than Calogero, to discuss the particle density, 
pair correlation function, and ground state energy at 
finite density. 

The potential g/r2 is very singular at the origin 
and requires some care to make physical sense. 
Classically, the attractive potential is too strong at the 
origin, requiring, for instance, a finite hard core to 
prevent "fall to the origin." However, for the quantum 
system, the zero-point motion acts to keep the particle 
from the origin, so that no cutoff is required, provided 
that the potential is not too attractive. Thus, for the 
2-body Hamiltonian 

02 02 g 
H = - - - - + , (1) 

OX2 ol (x _ y)2 

we are led to the restriction g ~ - t. This point is 
discussed by Landau and Lifshitz3 and is reproduced 
as an appendix at the end of this paper. Within this 
range of g, there are no bound states. The unnormal­
ized solutions for the 2-body Hamiltonian of Eq. (I) 
are 

"P± = eiKRrlJ±ikr) 
f"OoooI eiKRrl±a, r ---+ 0, 

f"OoooI eiKR cos (kr - !1T =F t1Ta), r ---+ 00, 

E = t(k2 + 1(2) (2) 

with 
a = HI + 2g)1 ~ 0, 

x = R - r, k ~ 0, 

Y = R + r, r ~ O. 

Ja(x) is a Bessel function. From the considerations of 
Landau and Lifshitz and the Appendix, we select the 
unique solution "P == "P+ corresponding to the upper 
sign in Eq. (2). The wavefunction for r ::;; 0 is given by 

"P( -Ir/} = ±"P(lrl), (3) 

corresponding to bosons or fermions, respectively. De­
fining a new parameter). = ! + a = HI + (1 + 2g)I], 
we see that the "physically reasonable" solutions are 
). ~ t. However, as explained in the Appendix, one 
can also treat free bosons by including the "unreason­
able" solutions t > ). ~ 0, corresponding to the 
lower sign in Eq. (2). With this understanding, in the 
expressions which follow, we may take). to range 
from 0 to + 00. 

II. THE GROUND STATE WAVEFUNCTION 
IN A HARMONIC WELL 

We shall now consider the ground state of a system 
governed by the following Hamiltonian: 

N 02 g N 

H = - 2, -2 + II 2 + w2 2, x~. (4) 
i=10Xi i<j (Xi - Xi) i=1 

The last term is an external potential to contain the 
system, replacing the usual box of volume L. Since 
we will be concerned with the limit N ---+ 00, we will 
let w ---+ 0 in order to produce a finite density of the 
system in the interior. 

We write the wavefunction "P as "P = rPcp. We verify 
that the choice 

rP = IIlxi - Xii)" (5) 
i<i 

cp = exp (-tWi~ x~), (6) 

).2 _ ). = tg or A. = t + a, (7) 

is a solution, with 

E = wN[1 + }..(N - 1)]. (8) 

Since, for each ordering of particles, 'I{J is nodeless, 
it is the ground state. This is very much like Calogero's 
ground state wavefunction; however, our Hamiltonian 
contains an external harmonic well instead of mutual 
harmonic interactions. 

First, let the kinetic term of the Hamiltonian act 
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on 1p: 

a2 

-~-2(CPl(J) 
, ax; 

= _2cpl(J().2 - A) 2 1 
i<i(Xi - X;)2 

- 2)'cp t C~il Xi ~ X):~ - cP t ~~. (9) 

Thus, choosing A. !lccording to Eq. (7), we eliminate 
the mutual interaction term. We may rewrite the 
second term of Eq. (9) to give 

al(J 
-a = -WXil(J, 

Xi 

(10) 

Substituting into Eq. (10), we verify the eigenvalue 
equation with E as in Eq. (8). 

Let us rewrite 1p in terms of the variables 

Yi = (wJ).)lx;; (11) 
then 

1p = C! exp ( -lA. t y~) ]I rYi - YilA, (12) 

1p2 = C exp (-iP ~ y~) n.IY; - y;I/l, (13) 
l '1.<, 

with 
P = 2). = 1 + (1 + 2g)l. (14) 

C is a normalization constant, so that 

+00 

C-1 = r . J dY1 ... dYN1p2. 
~oo 

III. INTERPRETATION OF 1JI2 

It is at this point that we recognize the expression 
in Eq. (13) to be identical to the joint probability 
density function for the eigenvalues of matrices from a 
Gaussian ensemble. Choosing f3 equal to 1, 2, and 4 
corresponds to orthogonal, unitary, and symplectic 
ensembles, respectively. In our case, the most attrac­
tive situation, g = -l, corresponds to f3 = 1; free 
fermions corresponds to f3 = 2. 

We may immediately go to the literature4.6 and 
find the normalization constant C and the 1- and 2-
particle correlation functions. 

First, it is conjectured6 that the normalization 

constant C is given by 

C-1 = (27T)!Np-IN-t/lN<N-11 
N 

X [r(l + i(3)]-N IT r(1 + tf3;). (15) 
;=1 

This conjecture is verified for fi = 1, 2, 4. 
The particle density is given by 

+00 

a(y) = N r . J 1p2 dY2· .. dYN' (16) 
-00 

normalized so that 

i+OO 

-00 a(y) dy = N. (17) 

One finds7 

( _ {7T-1(2N _ y2)t, y2 < 2N, 
a y) - 0, y2 > 2N. 

(18) 

This is true for all {J's. The density of x's, normalized 
in the same way, is 

d(x) = 7T).). W (19) (
.!eNW _ w

2

:

2r x2 < 2N). , 

O 2 > 2N). , x. 
(0 

We plot d(x) in Fig. 1, comparing it with the corre­
sponding density for the t5-function interaction problem 
of Lieb and Liniger.8 Denoting the density at x = 0 
by d, we find 

-1 

d(x) 

f'v> -- .... 
/,/ " 

/ , 
/ , 

I \ 
I \ 

I \ 

/ h \ 
I I \ I \ 

I \ 
I \ 
I \ 

I \ 

-0.5 o 0.5 

(20) 

FIG. 1. Particle density d(x), for;' = ! in a well w = 7T2j2N, is 
shown by the solid curve. For comparison, the density of a boson 
system, interacting by V(r) = 2<5(r) in one dimension at the same 
chemical potential in the same well, is shown by the dashed curve. 
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G(r) 

1.0 r---------

FIG. 2. The pair correlation 
function is shown for the three 
values f3 = I, 2, 4; we have 
taken d = 1. 

or 

0.5 f3 = 1/ 

/1 

/ 
/ 

A 
/ 

0.5 

(20') 

Thus, we see that, for fixed d, letting N -+ 00 means 
that co -+ 0 as N-1 • 

We may extract from Eq. (19) the ground state 
energy for a system at density d in the more con­
ventional box of volume L, instead of a harmonic 
well. The energy density must be intensive and have 
dimensions L -3; thus the only choice is 

ElL = d3e(A), (21) 

where e().) is a dimensionless function of the coupling 
constant. The chemical potential is then 

(22) 

Placing this system in a harmonic well, the chemical 
potential becomes 

p. = 3d2(x)e().) + W2X 2 

or 
d(x) = {[(,u - w2x2)/3e().)]t, x2 < p.lw2, (23) 

0, x2 > p./w2
• 

Comparing Eq. (23) with the previous equation (19), 
we find 

e().) = i).2172, 

E/L = td3).2172. (24) 

Likewise, we may determine the thermodynamic 

1.0 1.5 2.0 

r 

properties at zero temperature. Considering pressure 
P as a function of temperature T, fugacity Z, and 
coupling constant A., we find that P must be of the 
form 

P = Tfp(Z, A.). (25) 

Thus the energy density is given by 

§.. = T
20(!.) 

L aT T 
= tTfp(Z, A) = iP. (26) 

The equation of state at T = 0 is therefore found to be 

(27) 

We now consider the pair correlation function G(r). 
Since the density factors out trivially, we take d = 1 
in the following equations. Then G(r) -+ 1 as r -+ 00, 

and we write 
G(r) = 1 - Y(r) 

and 

b(k) = f:oo"'drY(r)e2lTikr. 

Then we find the following: 
(a) For f3 = 2, 

Y(r) = [s(rW == [(sin l7r)/l7r]2, 

b(k) = {l - Ikl, Ikl ~ 1, 
0, Ikl ~ 1. 

(28) 

(29) 

(30) 

(31) 
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b(kl 

\:--...---------o f----+--- \- 1 -"~ __ ---

\ /' 2 

-o.S 

\ I 
I I 
1/ 
1/ 
1/ 
1/ 
I 

k 

FIG. 3. The negative Fourier transform of the pair correlation 
function is shown for the same three values of f3; again d = I. 

(b) For9 fJ = 1, 

tp± are defined in Eq. (2). We take kb to be small, and 
assume V = c2jb2 , r < b, with c real or imaginary. 
This includes both cases (i) and (ii). 

We match logarithmic derivatives at b, obtaining 
the equation 

with 

T = {C tanh (c), bosons, (A3) 
c coth (c), fermions. 

T is simply a number, equal to (g! tanh (g!), 
g! coth (gl» for cutoff (i) and (+ 00, + (0) for 
cutoff (ii). Solving for A, we obtain 

(A4) 

Y(r) = (1'" s(Z) dZ) (d~~») + [s(r)]2, 
Thus if g ;;:: t, a > 0 real, then, as b -+ 0, A -+ 0, 

(32) with the exception of the case 

{

I - 21kl + Iklln (1 + 2 Ikl), 
b(k) = -1 + Iklln (21kl + 1), 

21kl- 1 

(c) For fJ = 4, it is conjectured10 that 

Ikl $1, 

Ikl ;;:: 1. 

(33) 

( f2r ) (1 dS(2r») 
Y(r) = [s(2r)]2 - Jo s(Z) dZ 2 dr ' (34) 

b(k) = {1 - ! Ikl + t Iklln £\(Ikl - l)\J, 
0, 

Ikl $ 2, 
Ikl ;;:: 2. 

(35) 

These are the only cases for which the pair correlation 
function can be evaluated. We notice the system 
becomes more nearly ordered on a lattice as fJ in­
creases or, equivalently, as the interaction becomes 
more repulsive. Figures 2 and 3 show G(r) and b(k) 
for these three values of fJ. 

APPENDIX 

We wish to cut off the gJr 2 potential for r < b, 
replacing it by a less singular potential. Then, letting 
b -+ 0, we hope for a unique limiting solution "1'. Two 
unbiased choices for the potential V when r < bare: 

(i) V = g/b2 , r < b-flattening out the singularity; 
(ii) V = + 00, r < b-a hard core. 

The solution for r ~ b will be 

(AI) 

T= t - a. (A5) 

This is a resonance condition and is not fulfilled for 
cutoffs (i) and (ii). 

For g < t, a is pure imaginary, and A does not 
approach a limit. Upon closer examination, one sees 
that there is no lowest energy eigenstate for the 
Hamiltonian in this case. 

There is some precedentll for using the solutions 
"1'-, although as we have seen, this is surely artificial. 
For instance, one wishes to have two independent 
solutions in the scattering of nonidentical particles 
by a gJr 2 potential. We take the viewpoint that the 
mathematical equations are easily extended to the 
"unphysical" tp-solutions with no extra effort; thus 
these cases are included in this paper. 

• Work supported in part by National Science Foundation Grant 
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We continue our investigation of a system of either fermions or bosons interacting in one dimension 
by a 2-body potential V(r) = glr2

• We first present an approximation for the eigenstates {)f a general 1-
dimensional quantum many-body system. We then apply this approximation to theglr2 potential, allow­
ing complete determination of the thermodynamic properties. Finally, comparing the results with those 
properties known exactly, we conjecture that the approximation is, in fact, exact for the glr2 potential. 

INTRODUCTION 

This paper continues an investigation of the 
properties of a I-dimensional quantum N·body system 
interacting by the 2-body potential VCr) = g/r2. As 
before, we shall be concerned with the thermodynamic 
limit: N --+ 00 and volume L --+ 00, with density d = 
N/L kept finite. The first paperl treated the ground 
state exactly; this paper will develop an approximation 
for the excited states, and hence the thermodynamics. 
Thus, the first section of the present paper introduces 
this approximation, while the second section applies 
it to the g/r2 potential. Finally, the third section com­
pares the results with those properties known exactly: 
zero temperature thermodynamics, second and third 
virial coefficients, and the limit of zero interaction. 
It is found that in all cases our approximation 
reproduces the exact results. Thus we are finally 
led to conjecture that the approximation is, in fact, 
exact for the g/r2 potential. 

I. APPROXIMATE EIGENVALUES OF A 
I-DIMENSIONAL N-BODY SYSTEM 

We now present an approximation for the energy 
eigenvalues and thermodynamics of a system of N 
fermions or bosons interacting in one dimension. 
Later we shall apply the method specifically to the 
g/r2 potential, but we expect it to apply much more 
generally in one dimension whenever a potential has 
a phase shift and no bound states. This restriction to 
potentials with no bound states results because the 
approximation uses an asymptotic wavefunction 
which neglects diffraction effects from the simultaneous 
interaction of three or more particles. The results will 
then depend on the 2-body Hamiltonian through the 
exact 2-body phase shift. The scheme is interesting, 
for it gives the thermodynamics in an approximate 
but closed form, in contrast to a systematic series 
expansion. On the other hand, it is difficult to esti­
mate the error. The approximation is modeled on the 
exact solution of the I-dimensional b-function boson 
problem.2,3 

Consider the 2-body problem governed by a 
Hamiltonian: 

02 02 

H = - - - - + V(lxl - x 21). (1) oxi ox~ 

For Xl « X 2 , the asymptotic wavefunction is 

Weassumethatkl > k 2 • ThenS(k) = -exp [-if.J(k)] 
is the S matrix and O(k) is the 2-body phase shift; O(k) 
is odd in k. For bosons or fermions, respectively, we 
have 

"P (Xl» X2) = ± "P (Xl « x 2)· 

The energy is given by E = k~ + k~. In the center of 
mass coordinates [Eq. (1.2)], the asymptotic wave­
function becomes 

"P = (2/i)eiKR sin [kr - lO(k)]. (3) 

For later reference, we list O(k) for the following 
examples: 

b function, VCr) = 2cb(r): O(k) = -2 tan-l (k/c), 

(4a) 

hard rod, vCr) = + 00, r ::;; b: O(k) = kb, (4b) 

VCr) = g/r2: O(k) = (1Tk/2Ikl)[(1 + 2g)t - 1], (4c) 

free fermions: O(k) = 0, (4d) 

free bosons: O(k) = -k1T/lkl. (4e) 

Our basic approximation will be to assume that the 
asymptotic N-body wavefunction is that given by 
2-body scattering alone. Therefore, there IS no 
diffraction, and momenta are exchanged in pairs. The 
asymptotic wavefunction for the region X I « X 2 « 
... « XN is a sum of N! terms corresponding to the 
N! permutations P of the N k's, kl > k2 > ... > k N: 

"P = I A(P) exp (i I kp;x;). (5) 
p 

The coefficients A (P) are related by 2-body scatterings: 

A(· .. k', k .. ·)/A(· .. k, k' ... ) = _e-i6(k-k'). (6) 

251 
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For other orderings of the particles, we simply use 
either Fermi or Bose statistics. This wavefunction is of 
the form known as Bethe's ansatz.4 

We are now ready to apply periodic boundary 
conditions to the wavefunction, determining a unique 
set of k's for each quantum state. The energy is given 
by 

(7) 

For a ring of circumference L, we find the following 
equation for the k's: 

e-ikL = (-I)N-l exp (i~O(k' - k»). (8) 

Upon taking the logarithm, we obtain 

kL = 217J(k) + 1 O(k - k'). (9) 
k' 

The /(k)'s are either integers or half odd integers 
which come from log (± 1)/217 and, in fact, serve as 
quantum numbers for the problem. They may be 
taken as free fermion k vectors. Thus, for example, 
the ground state is given by the J(k)'s densely packed 
ab.out zero. 

We now adopt Yang and Yang's derivation for the 
thermodynamics of the b-function Bose gas,3 without 
rederiving. The pressure is given as a function of 
temperature T and chemical potential fl by 

P(fl, T) = :£1
00 

dk In (1 + e-£(k)IT). (10) 
217 -00 

€(k) depends upon fl and T and satisfies the integral 
equation 

€(k) = - fl + k2 +:£ foo dk'O'(k - k') 
217 100 

X In (1 + e-£(k')IT), (11) 

with O'(k) = dO(k)/dk, O(k) being the 2-body phase 
shift. As usual, the density d is given by 

d = oP . (12) 
Ofl 

We now consider simple examples. 

(a) b-function potential: As our approximation is 
modeled on this problem, substituting the phase shift 
(4a) into the above equations gives the exact equations 
of Yang and Yang. 

(b) Hard rod of radius b: The phase shift is given 
by (4b). Equation (9) for the k's is 

kL(1 - db) = 217I(k) - bK, (13) 

K = 1 k = 217 II(k). (14) 
L 

Thus the k's for K = 0 are like free fermions in a 
volume reduced by the hard cores. 

We have 

€(k) = -fl + k2 + bP, (15) 

P = ~ i: dk In [1 + exp (fl - b: - k) 1 (16) 

If we write Po(p., T) as the pressure for free fermions, 
then P(fl, T) = Po(p. - bP, T). We may invert to 
find fl(P) = flo(P) + bP. Differentiating with respect 
to P gives the specific volume v == I/d, 

v(P, T) = vo(P, T) + b. (17) 

This clearly shows that the effect of the potential is 
only to create an excluded volume, and the system 
otherwise behaves as a system of free fermions. These 
results are exact. 

II. APPLICATION OF THE APPROXIMATION 
TO THE g/r2 POTENTIAL 

We now apply the approximation of the previous 
section to the g/r2 potential. Using the phase shift of 
Eq. (4c) , we find the kernel of the integral equation 
(11) to be 

O'(k) = 217yb(k), (18) 

with the following definitions: 

a = t(1 + 2g)t, A = a + t, y = a - t. (19) 

Thus the integral equation simply reduces to the 
transcendental equation 

€ = -fl + k2 + Ty In (1 + e-£IT). (20) 

Before proceeding with the finite T results, let us 
first investigate the ground state and low lying 
excitations. 

A. Ground State 

In the case of the ground state, we have the k's 
distributed with a density p(k), 

217p(k) = {I - 217yp(k), Ikl < ko, 
0, Ikl > ko, 

(21) 

where ko is a Fermi momentum determined by 

i kO 

p(k) dk = d. 
-ko 

(22) 

The ground state energy density Eo/L == Uo is given by 

f
k O 

Uo = p(k)k2 dk. 
-ko 

(23) 

These equations are easily solved to yield 

p(k) = 1/217A, (21') 

d = kO!17A, (22') 

(23') 
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Differentiating Uo with respect to d gives the chemical 
potential 

(24) 

We recall that these T = 0 results agree with the 
exact results of Paper I. 

B. Excitations near the Ground State 

Excitations near the ground state are finite numbers 
of hole-particle pairs obtained by taking particles 
from states ka below the Fermi surface to states k~ 
above the Fermi surface. Then the energy and momen­
tum are given by 

E - Eo = ! [€(k~) - €(ka)], 

P = ! [P(k~) - p(ka)]. (25) 
We easily find 

€(k) = {(k
2 

- k~)IA + k~, Ikl < ko, (26a) 
k2

, Ikl > ko, 

p(k) = {kiA, Ikl < ko, (26b) 
k - ko + kolA, Ikl > ko· 

Definingpo = kolA = TTd, we find the dispersion curve 
€(p) of the excitations to be 

€(p) = {A[p2 + YP~], Ipi < Po, (27) 
[p + YPO]2, Ipi > Po· 

Note that the derivative is continuous across Po and 
equal to 2Apo = 2ko. 

C. Thermodynamics 

Let us now return to Eq. (20). In terms of the 
following quantities, 

Z = fugacity = ell / T , 

IX = exp [(,u - k2)IT] = Ze-k2
/ T , 

, = eW = 1 + e-f
/
T , 

Eq. (20) becomes 

(28) 

IX = ,;. - ,y == 2eaw sinh tw, (29) 

with pressure given by 

T fa) T fa) 
P=- dkln,=- dkw(k). 

2TT -a) 27T -a) 

(30) 

Writing P as a function of Z, T, and a, we note the 
symmetry peT, -Z, -a) = peT, Z, a). Further, P 
as a function of Z has the following singularities: 

(i) A ~ 1, a branch cut along the negative real axis 
beginning at the branch point 

(ii) 1 > A > 0, two branch cuts extending to 
infinity from the following two branch points: 

(3Ib) 

The location of these branch points in the complex Z 
plane as a function of A is shown in Fig. 1. A = 0 is 
the case of free bosons. We therefore conclude from 
the above that there are no singularities on the posi­
tive real Z axis for A > 0 and hence no phase tran­
sitions in these models. 

D. Power Series Expansion for P 

We wish to find a power series expansion for P 
in Z of the form 

P = ! (I)t f ZnBn. (32) 
T 2 TT n=l 

We first invert Eq. (29) to give 

ro 

W = In' = !lXncn. (33) 
n=l 

Then we perform the k integration on Eq. (30) to give 

(34) 

independent of T. Therefore, the energy per volume 
u is given by the expression u = iP, as found in Eq. 
(1.26). 

1'\ _ 11 
I f\ - 12 

2 (2a - I)a 1 (y)a 
Zo = - (4a 2 _ I)t 2a + 1 = (1y)! -;- ; (31a) FIG. l. Solid curve indicates location of branch points of pressure 

J1. J1. in the complex Z plane as a function of A == ![I + (I + 2g)t]. 
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Upon inverting Eg. (29), we find the coefficients 
in the expansion of Eg. (33) to be 

( -l)n+! 
Cn = (ny + l)(ny + 2) ... (ny + n - 1) 

n! 

(-1t+! [n(y + 1)]! 
= 

n(y + 1) Il! (ny)! 
(35) 

Thus 

B = (_1)n+! [n(y + 1)]! 

n n!(y + 1) n! (ny)! 
(36) 

and the radius of convergence of the power series of 
Eq. (32) is 

(37) 

in agreement with Eq. (31). For Z ~ R, P is given by 
the analytic continuation of the power series of Eq. 
(32). 

E. Classical Limit 

The classical limit exists only for the repulsive case, 
for which Eq. (32) becomes 

- = - - L - [_Z(tg)!]n. P (T)!"'" (nn-l) 
T 27Tg n=1 n! n! 

(38) 

This expression as a function of Z has a branch cut 
along the negative real axis beginning at 

Zo = -(l/e)(2/g)!. (39) 

F. Special Cases 

We may now consider as examples the special cases 
investigated in Paper I, with f3 = 1, 2, 4. These may 
all be expressed in closed form. 

(a) f3 = 2, g = 0, y = 0: , = 1 + oc, 

i = l... C"'" dk In [1 + Ze-k2IT]. (40) 
T 27T L"", 

This is the familiar expression for free fermions in 
one dimension. 

(b) f3 = 1, g = -t, y = -t: 
In , = w = 2 sinh-1 toc, 

- = 7T-1 dk smh-1 (tZe-k IT), P 1""" 2 

T -"'" 
(41) 

d = 7T-11: dk(1 + 4Z-2e2k2IT)-t. (41') 

(c) {J = 4, g = 4, r = 1; 

,2 _ , = oc or ,= t[1 + (1 + 4oc)t], 

p = (27T)-1 C"'" dk In [HI + 4Ze-k2/T)t + H (42) 
T L"", 

d = 7T-1I: dk Ze-
k2IT[1 + 4Ze-

k21T 

+ (1 + 4Ze-k"IT)t1-1. (42') 

III. COMPARISON OF RESULTS WITH KNOWN 
THERMODYNAMIC PROPERTIES 

In this final section, we shall test the approximation 
of the first section as applied to the g/r2 potential in 
the second section. As has been remarked, this 
potential presents a unique opportunity to test, since 
the 3-body problem is separable and hence exactly 
soluble. This enables us to calculate the third virial 
coefficient, or equivalently the third coefficient Ba 
in the fugacity expansion of Eg. (32). 

Preliminary to evaluating B3 exactly, let us first 
modify Calogero's solution5 for the 3-body Hamil­
tonian 

3 (J2 3 3 
H == - 2, -2 + 2, g 2 + w2 2, x~. 

i=l(JX i i<i=I(Xi - xJ i=1 

We first transform to the variables 

R = t(XI + X 2 + x3), 

x = 2-!(x1 - X2), 

y = 6-!(x1 + X2 - 2X3), 

r2 = X2 + y2, 

tan 1> = x/yo 

The Schrodinger equation becomes 

( 
(J2 1 (J 22M",) 

HR"P + - - - - - + w r + - "P = E"P, 
8r2 r 8r r2 

1 02 
2 2 H = --- + 3wR 

R 30R2 ' 

82 g( 1 1 
M",= --+- -+----

01>2 2 sin2 sin2 (4) + i7T) 

(43) 

(44) 

(45) 

(46) 

+ 1 ). (47) 
sin 2 (1) + -h) 

Thus the problem is separable. 
Only the operator HR of Eq. (46) differs from 

Calogero's problem. We seek a solution "P = 
''P,,,(1))''PrCr)''PR(R). First we solve M","P", = m"P", to find 

"P",(n) = (sin 34»).C~(cos 4», 

m = [3(n + AW, n = 0, 1,2, .... 
(48) 

C~ is a Gegenbauer polynomial. We then solve for 
"Pr finding 

"P~!.n) = r3(/+).) e-twr2L~(!+;')( wr2) , 

En . l = 2w(2n + 1 + 3(1 + ;')1, n = 0, 1,2, .... 

(49) 

L~ is a Laguerre polynomial. Finally, the center of 
mass equation (46) has a solution 

"Pkm ) = e-iwR' Hm [(3w)!R1, 
(50) 

Em = 2w(m + t), m = 0, 1,2, .... 
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Hm is a Hermite polynomial. The total energy E is 
given by 

E = En.! + Em 

= 2w[31 + 2n + m + !] + 6wy. (51) 

The first term in this expression is simply the free 
fermion expression, while the last term displaces the 
entire free fermion spectrum by 6wy. This is a 
surprisingly simple result. Generally, Calogero made 
a conjecture, equivalent to the conjecture in our case, 
that for any N, the spectrum is that of free fermions 
in a harmonic well w displaced by ywN(N - I). This 
is verified for N =:; 3. 

We now wish to compare these exact results with 
the calculation of the previous section. We do this by 
directly calculating a fugacity expansion for a g/r2 

system in a macroscopic harmonic well. At the same 
time, we may easily place the system of Sec. 2 in the 
same harmonic well, so that we may compare the first 
three coefficients in the fugacity expansion. 

Let us write the grand canonical ensemble as 

Q(Z, w, T) = eO. 

On the other hand, the expression of Eq. (32) allows 
us to calculate .Q as 

.Q = £00 P(x) dx 
-00 T 

T 00 B Zn 
=-L-T' 2w n=l n 

where Bn is given by Eq. (36). 

(56) 

Comparing Eq. (54') and (56), we see that they are 
the same; our approximation gives the exact second 
and third vi rial coefficients. 

In al1 instances where exact results exist, our 
approximation agrees. We collect these cases: 

(i) free fermions or bosons when g = 0; 
(ii) second and third virial coefficients; 

(iii) zero temperature thermodynamics. 

The last two points indicate agreement in opposite 
regimes. We are thus led to the following. 

00 
= LZNQN(W, T). 

Conjecture,' Al1 results of the second section are 
(52) exact. 

N=1 

.Q is an extensive variable. We find the coefficients of 
a fugacity expansion 

00 
.Q = w-1 L B~(T)zn, (53) 

n=l 

by the usual derivation of cluster expansions, to be 

Bf = lim WQl, 
<0-+0 

B~ = lim W[Q2 - Qi/2], (54) 
<0-+0 

B~ = lim W[Q3 - QIQ2 + l-Q~], etc. 
<0-+0 

If q N denotes the partition function for the free 
fermions in a harmonic well w, then Calogero's 
conjecture gives 

(55) 

This is correct for N =:; 3. Using the expressions for 
q N' we find it an easy task to evaluate B~, B~, and B~ 
from Eq. (54). We leave this task for the reader, 
quoting the values 

B{ = iT, B~ = tT(2y + 1), 

B~ = 3
1
6 T(3y + 1)(3y + 2). 

(54') 

It is very likely, although not proven, that Calogero's 
conjecture implies our conjecture through Eqs. (53) 
and (56); the converse cannot be true. However, it is 
believed that the approach of this paper reveals the 
physical basis of the conjecture to be the absence of 
diffraction effects in many-body scattering. 

We include as an appendix another amusing in­
stance where an approximation applied to the g/r2 

potential yields the exact solution. 

APPENDIX 

In this appendix, we wish to present a very simple 
example where again an approximation applied to 
the g/r2 potential problem yields an exact result. 
The example, being a I-body problem, has little to 
do with the more complicated many-body problem, 
yet it gives insight into the peculiarities of the g/r2 

potential and supports the conjecture made in this 
paper. 

We consider a single particle interacting with a 1-
dimensional rigid lattice of g/r2 potentials; the lattice 
constant is h. However, we first present an approxi­
mation, reminiscent of the approximation in the text 
of the paper, valid for any potential in one dimension 
which has a phase shift. This approximation is wen 
known in solid state physics. 
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Let the Schrodinger equation be 

( 
1 d

2 
) - --2 + U(x) 1p = E1p, 

2 dx 
(Al) 

with 
+00 

U(x) = I V(x - nb). (A2) 
11=-00 

V(x) is the potential between one lattice point and the 
particle; we assume it to be symmetrical. U(x) is 
periodic with period b. 

We now divide the lattice into equal cells, the nth 
being (n - !)b to (n + !)b. Let b be so large that there 
is no overlap of potentials. We write the solution in 
the nth cell as 

1p(x) = 1p~"'4>in'(kx) + 1p~n'4>~n'(kx). (A3) 

4>in '(kx) is a solution in the nth cell corresponding to 
a plane wave of momentum k, incident from the right 
on a scatterer at the origin, with amplitude chosen to 
make the amplitude of the outgoing wave on the left 
unity. 4>~n'(kx) is the time reversal of 4>in'(kx). We 
may then define a transfer matrix M, acting on the 
vector 

In terms of the transmission and reflection amplitudes 
Tand R, we find 

_I eibk/T R*/T* 1 
M - R/T e-ikb/T*' (A5) 

We shall parametrize the transmission amplitude by 

T = exp [ib(k)] cos O(k). (A6) 

To obtain a band structure, we require the solution 
to be periodic after N sites. This in turn requires 
MN = I, and, with det M = 1, we find 

Tr M = 2 cos (27TnjN), n = 1,2, ... ,N, 
or 

cos (bk - b)/cos () = cos (27TnjN). (A7) 

We solve this transcendental equation for k as a 
function of n and a band index, and calculate the 
energy by 

(AS) 

Our approximation consists of assuming Eqs. (A7) 
and (AS) to hold for all b. Obviously, for the c5-
function potential, our results will be exact since 
point interactions cannot overlap. 

We next apply the previous approximation to the 
g/r2 potential, when 0 ~ g ~ -t. First, we see that 

Eq. (A2) gives 
00 

U(x) = g I (x - nb)-2 
n=-C() 

(A9) 

The resulting differential Eq. (AI) is identical with 
Eq. (47) of the text; this band problem has been 
solved exactly by Scarf.6 We shall use Scarf's matching 
condition through the singular potential, where the 
most singular solution 'P- is taken symmetrical and 
the least singular solution 'P+ is taken anti symmetrical. 
As discussed in Paper I, this is an artificial choice, yet 
necessary for a nontrivial band problem. We easily 
find the transmission and reflection amplitudes to be 

T = sin (7Ta), R = -i cos (7Ta). (AIO) 

They are independent of k. Equation (A7) gives 

cos (kb) = sin ('ITa) cos (2'ITn/N) 
or 

k = cos-
1 

[sin ('ITa) cos (2'ITn/N)J. (All) 
b 

Thus the allowed bands of k values are of equal width 
and equally spaced. The energy is given by Eq. (AS) 
to be 

E = {cos-
1 

[sin ('ITa) cos (27Tn/N)]}2. (A12) 
2b2 

Upon comparing this result with Scarf's exact solu­
tion, we find them to be identical for all b, whether the 
potentials overlap or not. Thus, once again, an 
approximation applied to the g/r2 potential, where it 
would clearly seem to be inappropriate, has in fact 
yielded exact results. 

Addendum: After this paper was submitted, two 
preprints have appeared which may be used to supply 
a proof of our final conjecture. In the first preprint, 
F. Calogero? proves his own conjecture, our Eq. (55). 
One may then easily evaluate the grand canonical 
ensemble ofEqs. (52) and (53) by saddle point methods, 
as done by C. Marchioro and E. Presutti8 in the second 
preprint. The result is then seen to be identical to our 
Eq. (56); actually it is easiest to compare the average 
number of particles N = on/a In Z. 
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Some properties of static cylindrically symmetric universes consisting of gravitational and electro. 
magnetic fields with a central axial mass, charge, or current density are discussed. Of three permissible 
distinct configurations, general solutions of the appropriate equations are given for two. The properties 
of the solutions of these two are then examined in greater detail. The equations of motion of test particles 
(both charged and uncharged) are described for some simple trajectories. The qualitative effect of the 
magnetic field on uncharged test particle behavior in some instances is noted as well as the qualitative 
distinction in the behavior of charged and uncharged test particles. The algebraically independent 
invariants of the Riemann tensor are calculated. A stability analysis is carried out for the two solutions 
when the system is subjected to radial perturbations. It turns out that both solutions are stable. The 
stability analysis is carried out by using the equations of the already unified field theory of Rainich, 
Misner, and Wheeler. 

1. INTRODUCTION 
This paper reviews some aspects of static cylindri~ 

cally symmetric solutions of the combined Einstein­
Maxwell gravitational and electromagnetic fields. 
When there is a central axial mass density and no 
electromagnetic field, Einstein's theory introduces 
two integration constants into the solutions. One is 
related to the mass density; the other quite possibly 
arises from the fact that a central mass density is a 
limiting case of a mass distribution of finite extent in 
the plane perpendicular to the central axis. Hence the 
second constant is related to the radius over which the 
mass' distribution extends. This paper shows that 
the solutions for the situation with vanishing electro~ 
magnetic field is implicitly contained in the solutions 
with electromagnetic fields present in the limit that 
the latter fields vanish. The existence of electromagnetic 
fields introduces a third constant of integration. 

When a central mass density and an electromagnetic 
field are both permitted to be present, three possible 
configurations exist. The first is the central mass 
together with an axial current producing a magnetic 
field whose field lines are circles in the plane per~ 
pendicular to the axis and centered about the axis. The 
second configuration is described by a central mass 
density together with magnetic and electric fields 
parallel to the axis and no currents or charges any­
where. A special case of this permits the central mass 
density to vanish and leave only the magnetic and 
electric fields as sources of the gravitational fields. 
The magnetic field is held together by its own gravita~ 
tional attraction. It has been said that the same possi~ 
bility exists in the Newton-Maxwell theory also­
namely, that the repulsion due to the gradient of the 
magnetic pressure (assuming the case of no electric 

field as well as no central mass density) is balanced by 
the gravitational attraction of the different parts of the 
field for each other. However, if, in addition, the 
magnetic field must have vanishing curl, it must be a 
constant in the Newton-Maxwell theory since it is 
always in the axial direction. This is not the same 
type of possibility that is permitted by the Einstein­
Maxwell field, where the field has different values for 
diflerent distances from the axis. 

The third configuration possible is when there is a 
central mass density and a central charge density 
existing together with a radial electric field. The most 
general solutions possible have been found for the 
first two configurations; only a restricted range of 
exact solutions have been found for the last. Hence this 
paper deals in detail only with the first two con~ 
figurations. 

In the next section the three configurations are 
described in somewhat greater detail and the solutions 
are explicitly stated. In Sec. 3 the equations of motion 
of test charged and uncharged particles are given 
together with the first integrals. Some specific geodesic 
and charged particle motion is described. It is found 
that the electromagnetic field makes some unexpected 
qualitative changes in the motion of uncharged test 
particles and that charged particle motion differs 
unexpectedly from uncharged particle motion. 

Section 4 calculates the algebraically independent 
invariants that can be formed from the Riemann 
tensor. There are three of these corresponding to the 
three integration constants that are required by the 
equations. In Sec. 5, an analysis is made of the stability 
of the solutions of the first two configurations de­
scribed above to radial perturbations. The first config~ 
uration is stable whether the central mass density is 
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positive or negative. The second configuration is 
stable whether the central mass density is positive, 
zero, or negative. However, when the mass is negative 
and large in magnitude, the analysis is not quite clear. 
The prediction of stability or not depends on the choice 
of boundary condition. Both solutions admit un­
damped, oscillatory behavior as perturbed solutions 
to the linearized equations. 

2. STATIC CYLINDRICALLY SYMMETRIC 
SOLUTIONS OF THE EINSTEIN­

MAXWELL FIELD 

The Einstein-Maxwell equations for a combined 
gravitatihnal and electromagnetic field in the absence 
of electromagnetic sources are1 

Rllv - tg)LvR = -iTllv == -!wllaw~, (2.1) 

wa{J.y + w{JY.1Z + wylZ.{J = 0, (2.2) 

WIlV ==fllv + H-g)!€llvlZ{Jr{J. (2.3) 

Illv is the anti symmetric electromagnetic field which in 
a local Minkowski frame is determined by 101 = EfJ)' 

112 = H~, etc.; € is the completely anti symmetric 
Levi-Civita tensor density and g is det gllv' In the 
presence of an electromagnetic charge-current vector 
jIl, Eq. (2.2) can be written in the integral form 

II wllvd(X(Il), x(v» 

Il<V 

= i III (-g)!€llv(1rjlld(x(V), x«1), x(r». (2.4) 

1l<(1<r' 

The left-hand integral is a surface integral taken over a 
closed 2-dimensional surface. If the surface is descri bed 
by the parameters ft1 and ft2' we have 

d( 
(Il) (v» _ O(X(Ill, x(v» d d 

x ,x - ~( ) ft1 ft2' (2.5) 
U ft1' ft2 

The right-hand integral of (2.4) is the volume integral 
over the 3-dimensional volume enclosed by the surface 
over which the left side was integrated. 

The theory described by (2.1), (2.2), and (2.3) is 
equivalent to a purely geometrical theory for which 
the following equations are valid2 : 

R == R/ = 0, 

R/R/ = iRIZ{JRIZP~IlV, 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

RIlVVIlVV ~ O. (2.10) 

Equation (2.10) must be true for any timelike vector vll . 

Actually, the geometrical theory (2.6)-(2.10) is 
equivalent to the usual theory (2. I )-(2.3) only for 
non null fields, i.e., fields for which Ra{JRIZ{J do not 
vanish. We shall only be dealing with nonnull fields 
in this paper. 

If Eqs. (2.6) and (2.7) are valid, it can be shown that 
there are two null eigenvecto'rs, kll and III of Rllv 
normalized such that kill = tRIZ{JRIZ{J. WIlV can be 
determined from kll and III as follows: 

R/kv = tRapW{Jkll, R/lv = tRa{JR a{J III , (2.11) 

WIlV = 4! [lllkv - klliv + i( - g)!€IlAv(1e-k(1]ei6
• 

(Ra{JRIZP) 
(2.12) 

With W chosen in this way and () an arbitrary 
function of the coordinates, (2.1) is satisfied. If and 
only if (2.8) is satisfied, () can be chosen up to a 
constant by a line integral2 of (Xil so that the resultant W 

satisfies (2.2). Our paper is concerned with a coordinate 
system in which (Xil vanishes identically; hence (2.8) 
is certainly true, and () is an arbitrary constant. 

The most general metric with cylindrical symmetry 
can be written in the form3 

ds2 = e2y- 21P( -dt2 + dp2) + p2e-21P d</} + e21P+21l dz2, 

- 00 < t = XO < 00, 0 ~ </> = x 2 < 27T, 

- 00 < z = x 3 < 00, 0 ~ p = Xl < 00, (2.13) 

where y, 1jJ, and ft are functions of p alone. We shall 
review the solutions to the Einstein-Maxwell field 
equations for this metric.4 The components of the 
Ricci tensor for the metric are written in Refs. 2-4. 
When ft = 0 and y and 1jJ depend on both p and 'T, the 
components are given in Eqs. (5.3)-(5.6). For ft ~ 0 
and all variables dependent on p alone, Roo, to which 
we often refer, is 

Roo = _e2tp-2y[ypp - 1jJpp - (1jJp/p) 

+ (Yp/p) + ypftp - 1jJpftp]· (2.14) 

Equation (2.8) is satisfied for the metric since (Xil == O. 
Equations (2.6) and (2.7) become 

Roo + R11 + R22 + R33 = 0, 

(ROO)2 = (Rl)2 = (R22)2 = (Ra3)2. 

(2.15) 

(2.16) 

It is easy to see that there are three qualitatively 
different possibilities: 

Case I: Roo = -R11 = R22 = -Ra3; 

Case II: RoO = -Rl = -R22 = R3a; (2.16') 

Case III: RoO = Rl1 = -R22 = -R33• 

For both Cases I and II, RoO + RII = O. Under these 
conditions, one can consider3 ft == O. In Case III the 
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character of the electromagnetic field is completely 
determined by ft. Let us consider each case in turn. 

Case I: Roo = -Rl = R22 = _R33 

In this case the most general solutionS can be 
described by the line element 

ds2 = _ p2c2+2C(1 + kp-2C)2e2a(dt 2 _ dp2) 

Also 

+ p2c+2(1 + kp-2C)2 dcp + p-2C(1 + kp-2C)-2 dz2. 

(2.17) 

(2.18) 

c, k, and a are integration constants, with k ~ ° to 
satisfy (2.10). w llV i~ found by the prescription given. 
Its phase is chosen so that an integration of (2.4) over a 
cylinder of unit length including the central axis yields 
a real value for the current I along the axis. The axial 
current and the field are 

1= 47TC(k)!, 

!pz = 2c(k)!g33/P' 

(2.19) 

(2.20) 

All other components of the electromagnetic field 
vanish. In the terminology of flat space, a current in 
the z direction is producing a magnetic field in the c/> 
direction. If k = 0, we recover the most generaL 
solution for an Einstein space with cylindrical sym­
metry. 

To comment for a moment on the solution with 
k = 0, we see that the line element contains two 
arbitrary constants c and a. We shall show later that 
for weak fields tc can be identified as the mass per 
unit length of the Newtonian theory under certain 
conditions. Whereas the linear mass density is the 
only parameter in the Newtonian theory, it is not so 
in the Einstein theory. The parameter a plays a role. 
We shall later show that the values of the scalar 
invariants that can be constructed from the Riemann 
tensor in the Einstein and Einstein-Maxwell cases 
depend on both c and a in the former case and on c, k, 
and a in the latter. If k and c both vanish, the space is 
not Euclidean unless a = 0; the limit (p ---+ 0) of the 
ratio of the circumference to radius of a small circle 
perpenuicular to the axis is 27T exp (-a). Marder6 has 
discussed several possible physical reasons why a 
second parameter is necessary in the purely gravita­
tional case. A real physical situation has mass distrib­
uted from the axis to a distance Po; a is needed 
to match the line elements properly at Po. Also, a is 
needed as a measure of some parameter of a physical 
system which is stationary, undergoes radial motions 
of some kind, and then is stationary again; a is thus 

somehow related to the fact that gravitational radia­
tion occurred. Demanding that space becomes flat if 
c = ° (no mass and no current) requires that a 
vanishes whenever c does. 

It is interesting that if k vanishes, the electro­
magnetic field vanishes, but that the mass density and 
the gravitational field do not. However, if c vanishes, 
the mass density and the electromagnetic field both 
disappear. Of course, we know that nature permits 
masses without currents but not currents without 
masses, consistent with the results obtained in this 
case. This result may be contrasted with the situation 
in Case II, where the solution will permit an electro­
magnetic field without masses. However, for Case II, 
there will be no currents either; presumably both 
currents and masses have been moved to infinite 
values of z, and the solution cannot elucidate the 
limiting physical situation regarding the sources 
present there. 

Let AIl(a) be an orthonormal tetrad with AIl(O) timelike 
and pointing to the future. From lap we can form the 
invariants 

!(aP) = !llvAIl(a)Av(p)' (2.21) 

Sometimes invariants formed in this way are called the 
"physical" components of the corresponding tensor. 
If we choose 

A(O) = «_gOO)!, 0, 0, 0), 

A(1) = (0, (gil)!, 0, 0), 

A(2) = (0, 0, (g22)!, 0), 

A(S) = (0, 0, 0, (gSS)!), 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

the physical component of the electromagnetic field 
!pz [Eq. (2.20)] is 

11 S3! 2c(k)!ea 

B.p == !P.(g g ) = ph2C+l(1 + kp-2C)2 (2.26) 

Case II: RoO = -Rl = -R22 = R33 

The most general solution for this case is described 
by the line element 

ds2 = - p2C2+2C(1 + kp-2C)2e2a(dt2 _ dp2) 

with 

+ p-2C(1 + kp-2C)-2 dc/>2 + p2c+2(1 + kp-2C)2 dz2, 

(2.27) 

(2.28) 

As before, c, k, and a are integration constants with 
k ~ O. The space becomes flat for c = -1, k = 0, 
and a = 0. We shall show later that (J == -(1 + c) 
can, under certain conditions, be interpreted as twice 
the mass m per unit length along the axis, c = -1 
corresponding to vanishing mass density. For c = -1 
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and k = 0, the limit p - 0 of the ratio of circumfer­
ence to the radius of a circular perpendicular to the 
axis is again 277 exp (-a). When k:F 0, the line 
element (2.7) is invariant to the following transforma­
tion of constants and coordinates: 

e = -e', k = Ijk', e2a = k'2e2a', 

k '2' .I.. .I..'jk' , , Z= Z, .,..=.,.. , p=p, 1=1. (2.29) 

Of course, the range of cp' should be readjusted such 
that 0 ~ cp' < 277. It can be shown that such a 
readjustment is equivalent to a change in the constant 
a'. Because of the invariance, we shall henceforth, if 
k :F 0, discuss (2.27) only under the consideration 
e ~ O. 

Finding !/AV from (J)/AV by the prescription given 
yields 

f'tz = 2e(k)! cos (J, 

!pq, = -2e(k)!g22(sin (J)j p, 

(2.30) 

(2.31) 

where (J is the arbitrary phase factor of (J)/Av' There are 
no charges or currents along the axis. Using the tetrad 
(2.22)-(2.25), we see that the physical components of 
the field are 

00 33! 2e(k)!e-a cos () 
Ez == fti - g g ) = - pC2+2C+I(1 + kp-2C)2' (2.32) 

11 22! 2e(k)!e-a sin () 
Bz = Jpq,(g g ) = - pc 2+2C+l(1 + kp-2C)2 (2.33) 

For e = -1 and a = 0, the mass density vanishes, 
and the metric and electromagnetic field intensities 
are everywhere regular. This special choice with 
(J = i77 gives a purely magnetic universe and has been 
studied in detail by Melvin7•8 and Thorne.B•lo If 
~ = -(1 + e) = 2m (central mass density) and 
e = -1 corresponds to flat space, a small positive 
mass density requires that e be somewhat less than -1. 
Suppose () = !77 and a = 0; then 

Bz = 2(1 + ~)k! p_~i(1 + kp2+2~)-2. (2.34) 

It is remarkable that, when there is no axial mass, 
~ = 0, the magnetic field is regular along the axis; 
when there is a central mass, 2~ = m, no matter how 
small, the magnetic field is infinite along the axis­
even though there is no charge or current distribution 
there as determined by Eq. (2.4). Again as in Case I, 
there is an intimate and surprising relationship 
between the existence of an electrically neutral mass 
density and the behavior of the electromagnetic field. 
-In Case I, an electromagnetic field is impossible 
without an axial mass; in Case II, an axial mass leads 
to an infinite axial field. 

Case Ill: RoO = R/ = -R22 = _R33 

Since RoO + R11 :F 0, we must retain /-t in the 
general metric. Equations (2.7) to be solved in this 
case reduce to 

2 2 2'IjJp 
'ljJpp + /-tpp + /-tp + 2'IjJp/-tp + - = 0, (2.35) 

p 

2 4 2 2yp 
/-tp + /-tpp - 2Yp/-tp + /-tp'IjJp + 2'IjJp - - = 0, 

p 
(2.36) 

2 2'IjJp YP /-tp ·2 0 
'ljJpp - YPp + - - - - - + 'ljJp/-tp - Yp/-tp = . 

p p p 
(2.37) 

It can be shown4 that the general solution to these 
equations can be found provided that a single integro­
differential equation can be solved. We have not 
succeeded in finding the general solution to these 
equations. We can, however, determine some char­
acteristic of the general situation without an explicit 
solution. Since Case I involved a cp component of the 
electromagnetic field and Case II a Z component, we 
would expect Case III to involve a p component. 
This is indeed the case: 

(2.38) 

Finding (J)/AV' using (2.4), and defining the real-valued 
expression 

yields 

(P (2" !.O ! 
Q = 277 Jo Jo (-g) J (g11g22) dp dcp 

Q = 277( -Roo)!p2e1J-Y, 

J01 = (-Roo)!eY-'I'. 

All other components of!/AV vanish. We have 

(2.39) 

(2.40) 

(2.41) 

Ep = Jop( _gOOg11)! = (-Roo)te'l'-Y = Qetp-/Ap-l/277. 

(2.42) 

As expected, there is in this case a central charge 
density together with a p component of the electric 
field. In spite of the appearance of (2.40), Q is inde­
pendent of p, as follows from its definition and Max­
well's equations (2.2) and (2.4). 

Because of our inability to produce the general 
expression for the metric in Case III, we shall restrict 
the discussion in the remainder of the paper to Cases I 
and II. A discussion of approximate solutions for 
Case III has been given by Safko.11 

3. MOTION OF TEST PARTICLES 

In this section the first integrals of the equation of 
motion of test particles for both charged and neutral 
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test particles are derived. In the case of neutral test 
particles, the motion is along geodesics. Of course, 
the test particles are considered as passive objects­
ignored are radiation and other electromagnetic and 
gravitational effects produced by the charge and mass 
of the test particles. The equations of motion of test 
particles of charge e and mass m are given by 

D2Xfl dxV 

m-- = ie-j/. 
DS2 ds 

(3.1) 

The right-hand side is purely imaginary since (dS)2 = 
-(dT)2, where T is the proper time of the particle. 

Case I: Roo = -Rl = R22 = -Raa 

For Case I, the equations of motion (3.1) become 

d2t goo.P dt dp 
-2 + --- = 0, (3.2) 
ds goo ds ds 

d
2

cf> + g22.p dtp dp __ 0, 

ds2 
g22 ds ds 

(3.3) 

d2z gS3.P dz dp . e 2e(k)teG dp - + --- = 1- -, (3.4) 
ds2 gss ds ds m p ds 

d
2
p + ! gll.p(dP)2 _ ! goo.p(dt)2 _ ~ g22.p (dcf»2 

ds2 2 gll ds 2 gll ds 2 gll ds 

_ ~ g33.P (dZ)2 = i ~ 2e(k)te
G 

ga3 dz. (3.5) 
2 gll ds m p goo ds 

The first three of these equations can be integrated 
to give (E, L, and J being integration constants) 

dt 'E goo- == I , 
ds 

dtp . 
g22- == 11, 

ds 

(3.6) 

(3.7) 

ga3 dz == i[L + 2(!!..) 1 e
G 

tp(k, C)] == iC(p). 
ds m k (1 + kp-2C) 

(3.8) 

1jJ is a function which is equal to zero when either k 
or c equals zero and is equal to one otherwise. A first 
integral of Eq. (3.5) is given by the line element 

(
dt)2 (dp)2 (dcf»2 (dZ)2 

1 = goo ds + gll ds + g22 ds + g33 ds . (3.9) 

For timelike motion, E2,]2, and £2 must all be positive 
quantities or zero so that E, J, and £ are all real. For 
spacelike motion, £2, ]2, and t% must all be negative 
quantities. The motion is geodesic if e = O. The 
geodesic motion is null if, in addition, the left-hand 

side of (3.9) vanishes; s is then interpreted as a 
parameter not related to the proper line interval, and 
£2, J2, and 1:2 are either all positive or all negative. 

The physical significance of E, J, and L can be 
deduced in a "weak-field, low-velocity" limit for a 
neutral particle. Define the velocity v by 

ds2 == goo dt 2(1 - v~). (3.10) 

This together with (3.6) yields 

(3.11) 

for small e, k, a, and v2 , to first order in these quan­
tities, 

E= 1 + e In p + tv2 + a + k. (3.12) 

Compare this with the total energy U of a particle of 
mass M and velocity v moving in the gravitational 
field of an axial distribution of mass m, the velocity 
of light and the gravitational constant G being taken 
equal to unity: 

U = M + 2Mm In p + tMV2. (3.13) 

Clearly this suggests the interpretation to first order, 

U/M = E - (a + k), (3.14) 

2m = c, (3.15) 

for the constant of integration E and for the identifica­
tion with the linear mass density. The interpretation 
can only be made for p sufficiently small that second­
order terms are ignorable compared to first-order 
terms. For large p (say, In p > 1) the interpretation 
can no longer be made. In ordinary units it turns out 
that (3.15) gives M = 2.2 X lOIse kg/m. 

To interpret J, 

yields, to zeroth order in e, a, k, and v2 , 

(3.17) 

which identifies J as the cf> component of angular 
momentum of the test particle divided by its mass. 

Similarly, 
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yields, to zeroth order. 

(~;) = L, (3.19) 

which identifies L as the z component oflinear momen­
tum divided by the mass of the test particle. 

A complete qualitative discussion of the motion of 
charged, or even of neutral, particles for a large range 
of values of c and k is a big task, which We do not 
undertake at this time. Instead, we shall deal with only 
a few special cases and consider that the central mass 
density is positive. The primary purpose of the 
discussion is to point out that the electromagnetic 
field can make qualitative changes in behavior of the 
motion of test particles, even of neutral test particles. 

Consider first motion of neutral test particles for 
which P and cP are fixed. In this case J = 0, I: = L, 
and Eq. (3.5) yields 

EZ gss.P (goo)2 

£.2 = - goo.P (gS3)3 

p2c2e2a( cpZC(1 + kp-2C) ) 
= -T (gS3)2 2k _ (c + 1)(1 + kp-2C)l~ + 1 . 

(3.20) 

For the motion to be consistently spacelike or time­
like, E2 and I:z must have the same sign. Hence 

k 2c 
. - P < O. (3.21) 
k(1 - c) - p2C(C + 1) 

Suppose first that no electromagnetic field exists; 
then k = O. Equation (3.21) reduces to 

1/(c + 1) < 0 (3.22) 

which cannot be satisfied for positive c. This gives the 
entirely expected result that, for a small central mass 
density (positive or negative), no motion parallel to 
the z axis is possible because of the gravitational 
attraction of the central mass. Inequality (3.22) does 
not have to be satisfied if the central mass disappears 
(c = 0), for then Eq. (2.5) is satisfied directly because 
gS3.p and goo.P both vanish. 

Suppose now there is a current flowing along the 
axis, k > 0, in addition to a mass, c > O. Inequality 
(3.21) is now satisfied in the range of p given by 

k(1 - c)/(1 + c) == PI2C ~ p2c ~ P2
2e == k, 

o ~ p2C < k, 
c < 1, 

e ~ 1. 

(3.23) 

This range shows where geodesic motion is possible; 
to see whether it is timelike, spacelike, or null, 

use (3.9): 

1 = (g33. P goo _ -.!.. \ e2 

goo.P (g33)2 g3J • 
(3.24) 

For timelike motion, 1:2 > 0; for spacelike motion, 
1:2 < 0; for null motion, 1:2 can have either sign, but its 
coefficient must be equal to zero. Hence 

{

> 0 timelike, 
g33 goo . 
~ - - 1 < 0 spacehke, 
goo.P g33 = 0 null, 

(3.25) 

g33.p goo = k - p2C (3.26) 
goo.P gS3 (e + 1)p2C - (1 - e)k . 

The analysis shows that 

2e...- 2e < 2c = k (2 - e) 
PI .::. P P.. - (2 + c)' e < 1} timelike, 

e> 1 

(3.27) 
p = P.. null, 

P .. < P ~ PZ spacelike. (3.28) 

All three types of geodesics are possible. The some­
what surprising result is that a circular magnetic 
field produced by an axial current apparently exerts a 
gravitational repulsion on a particle traveling along 
the Z axis. 

Table I summarizes the results for the various 
simple trajectories discussed here for neutral test 
particles for Cases I and II. Table II summarizes the 
possibilities for charged test particles. 

Consider now motion of neutral test particles for 
which P and z are fixed: I: = 0, and Eq. (3.5) yields 

E2 g2Z.p (goo)Z 

J2 = - goo.P (g2Z)Z 

= eza lC
I

-2(2C(C + 1) + k(c - 1»). (3.29) 
e 2e(c + 1) + k(c - 1) 

This ratio must be positive. For k = 0, 

c-I > O. (3.30) 

All motion is allowed for positive e; motion is 
impossible for negative e (negative mass density). 
From Eq. (3.32) below we deduce that for positive 
c < 1 all the motion is timelike; for c > 1, all motion 
is spacelike. We are not surprised at the fact that all 
circular geodesic motion is possible in the absence of a 
magnetic field. The centrifugal and gravitational 
influences are in equilibrium. 
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TABLE I. Summary of permissible motion (geodesics) for uncharged test particles for positive central mass density. 

Case I: Roo = -Rl = RII = -R33 (c,...., positive central mass density) 

p, r/> fixed 

k = 0, c < 0: all trajectories forbidden 

k > 0, c > 0: 
(1 - c) . . o < p.e < k (1 + c) forbIdden If c < 1 

(1 - c) Ie 2 - c. . . 
k (1 + c) ::;; p < k 2 + c tImehke If c < 1 

2-c o ::;; p2e < k -- timelike if c > 1 
2+c 

2-c p2e=k __ 
2+c 

2-c 
k 2 + c < p2e::;; k 

p2e> k 

null 

spacelike 

forbidden 

p, z fixed 

k = 0, c > 0: all trajectories allowed, 
timelike if c < 1 and 
space like if c > 1 

k > O,c > 0: 
k(1 - c) . . o < p2e < C+T forbIdden If c < 1 

k(c - 1) . . o < p2e < C+T" forbIdden If c > 1 

k(1 - c). . . 
p2e 2 ----err tJmehke If c < 1 

2 k(c - 1) I'k'f 1 p e 2 C+T space I e Ie> 

r/>, z fixed 

k = 0, c > 0: all trajectories 
are allowed 
and may be 
timelike, null, 
or spacelike 

k > 0, c > 0: all trajectories 
allowed and 
may be time­
like, null, or 
spacelike 

Case II: RoO = -Rll = _R.2 = R33 (6 = -1 - c,...., positive central mass density) 

k = 0, 6 > 0: all trajectories forbidden 

k "" 0 6 > 0" 0 < p'(l+dl < __ 6_ forbidden 

k = 0, 6 > 0: all trajectories allowed and 
timelike 

k 20,6 2 0: all trajectories 
are allowed 
and may be 
timelike, null, 
or space like 

,. k(2 + 6) 
k > 0, 620: 

6 
p2(l+"1 > spacelike 

k(2 + 6) 

k "" 0,6 = 0: all trajectories are allowed and 
null 

1 - 6 
o < p2(l+dl < k(3 + 6) timelike 

1 - 6 
p2(l+dl = k(3 + 6) null 

1 - 6 --- < p211+dl < k-1 spacelike 
k(3 + 6) 

For k ¥= 0, E2/J2 > 0 requires 

p2C ~ Pm
2C 

= {~~~ = ~~;~~ : ~~: : ~~: (3.31) 

There is a region near the axis which is not allowed. 
From 

(3.32) 

we deduce that all motion allowed by (3.30) and (3.31) 
is timelike for c < 1 and spacelike for c > 1. At 
P = Pm the bracket of (3.32) is infinite and J2 vanishes. 
Apparently the presence of the magnetic field pro­
duced by the axial current inhibits the gravitational 
attraction of a circularly moving neutral test particle 

to the point that at P = Pm it takes no centrifugal 
force to maintain a balanced motion (stationary) of 
the test particle. Closer circular motion is impossible. 

Suppose that now <p andz are fixed. We then have 
J = 0 and L = O. From L = 0, we must conclude that 
if an axial mass and current are both present and the 
test particle is charged, no radial motion is possible. 
The conclusion follows from the P dependence of L 
for e ¥= O. This was expected; in the presence of the 
magnetic field, radial motion of a charged particle 
would produce an acceleration in the z direction. 
Radial motion is possible only for a neutral particle. 
Equations (3.5), (3.6), and (3.9) imply 

(3.33) 

Timelike motion is possible if £2 is positive and 
dp/ds is purely imaginary, £2 > -goo. Spacelike 
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TABLE II. Summary of permissible motion for charged test particles (elm) for positive central mass density. 

Case I: RoO = -Rll = R.a = -Rsa (c '" positive central mass density) 

p, <P fixed 

k = 0, c > 0: all trajectories forbidden 

k = 0, c > 0: no spacelike motion is 
possible; for any p, a value 
of elm can be found for 
which timelike motion is 
possible 

p, z fixed 

k = 0, 1 > c > 0: all trajectories allowed 
and timelike 

k = 0, c > 1: all trajectories allowed and 
space like 

k > 0, c > 0 
k(I - c) , , o < p2C < C+T forbidden If c < 1 

2 k(c - 1) ~ b'dd 'f 1 o < p c < ---c+l10r I en Ie> 

k(l - c), , , 
p2C ~ ---c-+T tJmehke If c < 1 

k(c -1) 
p2C ~ C+1 spacelike if c > 1 

<p, z fixed 

k = 0, c > 0: all trajectories are 
allowed and may be 
timelike, null, or 
spacelike 

k > 0, c > 0: all trajectories 
forbidden 

Case II: RoO = -Rll = -R.' =·R.s (~= -1 - C ....... positive central mass density) 

k = 0, ~ > 0: all trajectories forbidden k = 0, ~ > 0: all trajectories allowed and 
timelike 

k = 0, ~ > 0: all trajectories are 
allowed and may be 
timelike, null, or 
spacelike 

k :;6 0, ~ > 0: 
6 

o < p2(1+/J) < k(2 + 6) forbidden 

~ 
p2(1+d) > k(2 + ~) spacelike 

k :;6 0; 6 = 0: all trajectories forbidden if 
electric field is present; if 
field is purely magnetic, all 
trajectories are allowed and 
null 

k > 0, 6 ~ 0: all trajectories forbidden if 
electric field is present; if field 
is purely magnetic, only time­
like motion is permissible; for 
any p, a value of elm can be 
found for which timelike 
motion is possible 

k > 0, 0 ~ 0: all trajectories 
forbidden 

motion prevails whenever £2 is negative. Null geo- motion is allowed if 0.9) is satisfied: 
desics are characterized by 

dp 
-= 1. 
dt 

(3.34) 

To see the possibilities for modification of the 
motion for charged test particles, look again at the 
situation of fixed p and cP for such particles. Instead of 
Eq. (3.20), Eq. (3.5) yields 

E2 = _ g33,p (goO)2 + ~ 4c(k)tea.!.. (gOO)2. (3.35) 
\::2 goo.P (g33)2 m p\:: goo.P 

This shows immediately (c, k, and e all being nonzero) 
that spacelike motion is always impossible; the left­
hand side and the first term on the right-hand side are 
real, and the second term on the right-hand side 
cannot be purely imaginary as it must be for spacelike 
motion (\:: purely imaginary). In addition to (3.35), 

(3.36) 

for positive \::2. Equations (3,36) and (3.35) must be 
solved for E2 and \::2 and must yield positive quantities 
for both. It is clear that for any p such a solution is 
possible by a judicious choice of the sign and magni­
tude of elm. Hence motion along the z axis is possible 
for any radius depending on the appropriate choice of 
elm. This result is not surprising, since such motion 
in the presence of B", produces a radial repulsion which 
can balance the gravitational attraction. 

As expected, the qualitative nature of the motion 
for fixed p and z is independent of whether the particle 
is charged or not since it is moving parallel to the field. 
It has already been pointed out that motion with cP 
and z fixed is impossible for charged particles. 
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Case II: Roo = -Rl = -R22 = R33 

For Case II, the equations of motion (3.1) become 

d2t goo.P dt dp . e dz 2e(k)! cos () - + ---- = 1----'--..:....--
ds2 goo ds ds m ds goo 

(3.37) 

d
2

cp + g22.p dcp dp = -i ~ dp 2e(k)!sin (), (3.38) 
ds2 

g22 ds ds m ds p 

d
2
z + g33.p dz dp = i ~ dt 2e(k)! cos (), 

ds2 g33 ds ds m ds g33 
(3.39) 

d
2
p + !gu.p(d P)2_ !goo.p(dt)2_ !g22'P(dcp)2 

ds2 2 gll ds 2 gll ds 2 gll ds 

_ ! g33.P (dZ)2 = _ i ~ d cp 2e(k )! sin () g22. (3.40) 
2 gll ds m ds p gll 

The first integrals of the first three equations are 

goo dt == i(E + !.. Z2e(k)! cos e) = i8(Z), (3.41) 
ds m 

dCP.( e sin() ). 
g22 - = I J - --! 'IjJ(k, e) == 1'J(p), 

ds m(k) (1 + kp-2C) 
(3.42) 

g33 dz = i(L + !.. t2e(k)! cos e) == iCCt). 
ds m 

(3.43) 

Equation (3.9) is also a first integral of the set of 
equations. If the test particle is not charged, its motion 
will be independent of the phase factQr e. As far as 
strictly gravitational effects are concerned, we cannot 
distinguish an electric field from a magnetic field. 
Again for timelike motion, 8, 'J, and I: are all real; for 
spacelike motion, they are all purely imaginary. 

To determine the physical significance of E, J, and L, 
proceed as before. Expand (3.11) for small values of 
the quantities k, a, and v2 and 15 == -(1 + e) with 
e =0: 

E = 1 + 15 In p + kp2 + a + tV2. (3.44) 

If k = 0, the obvious identification to make is 
[compare (3.13)1 

VIM = E - a, 

2m = 15. 

(3.45) 

(3.46) 

We can stilI imagine this interpretation to first order 
and consider k p2 to be an extra gravitational potential 
produced by the electromagnetic field. J and L have 
the same interpretation as they had in Case I. 

For Case II, there is the interesting possibility that 
15 = 0, k ¥= 0, and a = 0, which would correspond to 
a universe with only electromagnetic and gravitational 
fields present. When () = 11T, the field is purely 
magnetic; geodesics for this case have been examined 

by Thorne1o and in greater detail by Melvin and 
Wallingford. 12 

Consider now the case of neutral test particles for 
which p and cp are fixed; a = J = 0, I: = L, and 
8 = E and from (3.40)-(3.43) 

(3.47) 

For 82 and 1:2 to have the same sign, the bracket must 
be positive. For k = 0, the magnetic field vanishes; 
in terms of 15 the required inequality is 

e-1 = - (1 + 15)-1 > 0. (3.48) 

This is the same as inequality (3.22), as it must be 
since we are dealing with the same physical situation. 
Equation (3.48) cannot be satisfied for positive 15. 
If k ¥= 0, the bracket in (3.47) is positive if 

p2(1+8l > l5/k(2 + 15). (3.49) 

The criterion for timelike, spacelike, or null motion 
is given by (3.25): 

(1 _ e2) p2C + k {> ° time like, 

e p2C(e + 1) + k(c _ 1) < ° spacelike, 

= ° null. 
(3.50) 

If mass is present, 15 > 0, all allowed motion is space­
like. If no mass is present, 15 = 0, all allowed motion is 
null, and, from (3.49), all p are possible. 

Suppose p and z are fixed (neutral particles). Then 
I: = L = 0, 'J = J, and 8 = E: 

82 g22.p (gOO)2 

'J2 = - goo.P (g33)2 
1 e2ap2C k _ p2C 

- - - (3.51) 
- (g22)2 k(1 - e) - p2C(1 + c) . 

The ratio is positive if 

l(IH) < k-1• (3.52) 

The criterion for timelike, spacelike, or null 
motion becomes (3.25) and (3.26). (The form of gS3 
for Case I is the same as g22 for Case II.) We are, of 
course, now interested in c somewhat less than -1. 
For small lJ, the result is 

° < p2(W) < (1 - 15)/k(3 + b) timelike, 

p2UH) = (1 - ~)/k(3 +~) null, (3.53) 

(1 - 6)/k(3 + 6) < p2(lH) < k-1 spacelike. 
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Case II seems to contrast dramatically with Case I. 
For fixed p and z the effect of the circular magnetic 
field in Case I was repulsive; in Case II, the z~directed 
magnetic field seems to be attractive. Similarly, for 
fixed p and </>, in Case I the magnetic field seems to give 
a repulsive effect, and in Case II it seems to give an 
attractive effect. 

The possibilities for fixed </> and z are the same for 
Cases I and II. No motion is possible if the test 
particle is charged. Geodesics are given by (3.33) and 
(3.41) with E2> -goo for timelike motion and 
E2 < goo for spacelike. Null geodesics satisfy (3.34). 

Consider the pOSSibility of charged test particle 
motion for fixed p and z. Because of the time-de­
pendent term in C, such motion is impossible unless the 
time-dependent term is made to vanish by the choice 
cos (j = O. Hence the motion is impossible if the field 
has an electric component. For a purely magnetic 
field it can readily be shown, analogously to Case I, 
for fixed p and </>, that no spacelike motion is possible. 
For any p, a value of elm can be found for which 
timelike motion of the charged test particle with 
constant p and z is possible. 

A charged test particle moving parallel to the z axis 
(fixed p and 1» has the same type of motion as an 
uncharged test particle if the field is purely magnetic. 
If the field is partially electric (cos () ;i: 0), such 
motion is impossible because of the time dependence 
of C. Equation (3.47) cannot be satisfied for all C. 
Apparently the charged particle increases energy as it 
is accelerated by the electric field, and hence the 
gravitational attraction to the axis increases. 

4. INVARIANTS 

In general, from the Riemann curvature tensor and 
the metric tensor, 14 algebraically independent scalar 
invariants can be constructed. If the Riemann tensor 
is decomposed into what is essentially the conformal 
curvature tensor and the Ricci tensor, four invariants 
can be constructed from the conformal tensor without 
using the Ricci tensor, four can be constructed from the 
Ricci tensor without using the conformal tensor, and 
six require the use of both the conformal and Ricci 
tensors. In this section the invariants of the space­
time under study are calculated. The invariants can be 
constructed by taking the physical components of the 
Riemann tensor using the orthonormal tetrad given in 
(2.22)-(2.25). The only non vanishing physical com­
ponents are given by the invariants 

(4.1) 

(4.2) 

I - PR 2tp-2y( 2 ) 
3 = 0303 = e 1pp - Yp"Pp , 

I - PR - 2tp-2Y( Yp 'ljJp) 
4. = 1212 - e yp1pp - 1ppp - -;; - -;; , 

I = P R - 2tp-2y( + 2 2 ) 5 - 1313 - e 'ljJpp 'ljJp - Yp'IjJp , 

(4.3) 

(4.4) 

(4.5) 

I - PR 2tp-2Y( 2 'ljJp) 
6 = 2323 = e -1pp + -;; . (4.6) 

If the calculation of the invariants is made, it turns 
out that they can all be expressed in the form 

I = ce-2a [IX + fl p-2C + y p-4C]1 p2c2HC+2(1 + k p-2C)4, 

(4.7) 

where IX, fl, and yare suitably chosen constants. It is 
obvious that all invariants vanish for c = 0 and that 
exp (-2a) is a factor multiplying all the invariants 
arid determines a scale of some kind. For Case I, the 
constants IX, fl, and yare given in Table III. 

It is perhaps not surprising that there are only three 
independent invariants because the metric contains 
three arbitrary constants a, c, and k. The relations 
between the invariants shown in the first column of 
Table III comes from direct calculation or by use of 
the equations which define R/ together with the 
fundamental equation (2.16a). For Case I, 

RoO = -11 - 12 - la, 

RoO = -Rl = -II + 14 + Is, 

RoO = R22 = -12 + 14 + 16 , 

RoO = -R33 = -13 + Is + 16 , 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

An easy calculation now yields for the physical 
components of the Ricci tensor 

PRO- PR 1 _ PR 2 - PR s 
0-- 1- 2-- 3 

4kc2p-2ce-2a 

= p2C2+4C+2(1 + kp-2C)4 . (4.12) 

If k = 0, the electromagnetic field vanishes and the 
invariants become equal to those for the pure Einstein 
vacuum case. Equation (4.7) becomes 

I = ce-2urxl p2C
2
+2CH, 11 = -16' 12 = -Is, 

Is = -14' and II + 12 + Is = O. (4.13) 

TABLE III. Constants determining physical components of 
Riemann tensor for Case I [see Eq. (4.7»). 

IX {J y 

II == -16 (c + 1) -2ck k 2(c - 1) 
I. -(c + 1)" 0 k 2(c - 1)2 
Is == -I. c(c + 1) -2kc ck"(1 - c) 
1. == 211 + T, + 21. (c + 1)' -8kc -k"(c - 1)" 
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The last relation shows that only two invariants are 
independent. They differ by a constant factor which 
can be measured at one space-time point. 

The invariants for Case II can be written immedi­
ately. The metric for Cases I and II are the same 
except for an interchange of g22 and gss. Hence 

I1(Case II) = I1(Case I), 12(Case II) = Is(Case I), 

Is(Case II) = 12(Case I), 14(Case II) = 15(Case I), 

15(Case II) = 14(Case I), IiCase II) = 14(Case I). 

(4.14) 

For Case II, it is of some interest to look at the 
invariants when c = -1 (no mass density). Equation 
(4.7) becomes 

1= -e-2"({3 + yp2)/(1 + k p2)4. (4.15) 

(3 and I' can both be obtained from Table III and 
relations (4.14) with c = -1. It is obvious in this 
case that the invariants are all regular, and well 
behaved, and vanish when k = O. 

S. STABIUTY ANALYSIS 

In this section the solutions for Cases I and II will 
be analyzed to see if they are stable when the system is 
subjected to radial perturbations of a certain type. In 
particular the functions 1jJ and I' will be represented 
by 

yep, t) = yep) + EIX(p, t), (5.1) 

1jJ(p, t) = 1jJ(p) + E{3(p, t), (5.2) 

where E is a small parameter and the equations will be 
considered to the first power of E only. It will turn out 
that both cases are stable against perturbations of this 
type in that no solutions with positive or zero mass 
density exist which grow exponentially with time. For 
both cases, undamped, oscillatory solutions exist. 

When I' and 1jJ depend on both p and t, the non­
vanishing components of the Ricci tensor are given by 

RoO = e2'1'-21(ypp - 1jJpp + 1jJtt - Ytt 

2 2 1jJp r p) 
- 1jJI --+ - , 

p P 
(5.3) 

R/ = e2'1'-21(ypp - 1jJpp + 1jJtt - rtt 

+ 2tp/ _ 1jJp _ r p), 
p p 

(5.4) 

R 2 - R 3 - e2'1'-21('11 .11 tpp) 2 - - S - Ttt - TPP - - , 
p 

(5.5) 

(5.6) 

Of course, R/ can be expanded in powers of E: 

R/(p, t) = R/(p) + ERpV(p, t). (5.7) 

R/ (p) is obtained by substituting yep) and tp(p) into 
(5.3) to (5.6). R/ can be calculated: 

R- ° 2'1'-2Y( {3 + {3 (3p + IX
p) o = e IXpp - pp tt - OCtt - --;; --;; 

+ [1 + 2({3 - IX)1RoO, (5.8) 

R- 1 - 2'1'-2Y( {3 + {3 + 4 R (3p IX
p) 

1 - e IXpp - pp tt - IX tt 1jJpl-'p - --;; - -; 

+ [1 + 2({3 - oc)]R/, (S.9) 

In the above expressions 1jJ and I' are the unperturbed 
functions of palone. 

R/(p, t) must satisfy the Rainich equations to the 
first order in E. The symmetry of the problem assures 
that IXI' == O. The vanishing of the trace of the Ricci 
tensor requires that 

(S.12) 

Equation (2.7) is 

(ROO)2 - (ROl)2 = U(ROO)2 - (ROl)2 + (Rll)2 

+ (R22)2 + (R3S)2], (S.13) 

and to first order 

(5.14) 

Hence for Case I 

(5.15) 

and for Case II 

(5.16) 

The linearized equations to be solved become the 
following (in terms of IX and (3 after substituting for 1jJp 
from the unperturbed solution): 

Case I: 

IXtt - IXpp + {3pp - {3tt 

+{3 --- -0 (
2C + 1 4kCP-2C-l) 

p p 1 + kp-2C - , (S.17) 

(5.18) 
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Case II: 

(l.tt - (l.pp + {3pp - {31t 

(
2C + 1 4kCP-2C-l) 

- {3p -p- 1 + kp-2C = 0, (5.19) 

(l.p {3p 
(l.tt - rxpp - - - 2{3tt + 2{3pp + 2 - = 0. (5.20) 

p p 

The boundary conditions must now be specified.13 

It is perhaps a good idea to specify them in terms of 
invariant quantities so that the results will be inde­
pendent of the particular coordinate sy~tem being 
used. One can choose local invariants and demand 
that nowhere does any component of the physical 
perturbed Ricci tensor [with tetrad of Eqs. (2.22)­
(2.25)] diverge more quickly than the most divergent of 
the unperturbed physical components of the Ricci 
tensor (actually the nonvanishing components equal 
each other). This condition makes sense considering 
the physical problem we are dealing with in that the 
physically important electromagnetic field is expressed 
in terms of the components of the Ricci tensor. In 
general, the boundary conditions mean that rx and {3 
are not permitted to diverge faster than y and "P, 
respectively. 

Another sensible invariant to look at is a nonlocal 
invariant. It is the ratio of the circumference to the 
radius of a circle surrounding the z axis in the (p, e/» 

hyperplane in the limit that the radius goes to zero: 

(-g22) de/> 1211 t 

K(p, 0 = 0 = 21Te-
y
(0.tJ. (5.21) 

Ip t 
O(-gIl) dp 

To first order in E, the change of this ratio for the 
perturbed solutions can be characterized by 

K(p, t)/K(p, 0) = e-~ .. (O·t) = 1 - Erx(O, t). (5.22) 

A reasonable boundary condition would be to 
demand that rx(O, t) vanish for all t in order to assure 
that the nature of the singularity along the axis does 
not change. 

Case I: RoO = -Rl, RoO = R22 
Consider solutions of the first-order equations ofthe 

form 
(I.(p, t) = rx(p) sinh nt, 

(3(p, t) = (3(p) sinh nt. 

(5.23) 

(5.24) 

If they exist and the constant n has a positive real part, 
the unperturbed solution is an unstable one since the 
perturbation vanishes at zero time but grows exponen­
tially with time when the time is small. A small initial 
perturbation will grow at an exponential rate. 

The general solution of Eq. (5.18) is 

rx = FKo(np) sinh nt + Hlo(np) sinh nt (5.25) 

when F and H are constants and Ko and 10 are modified 
Bessel functions. Since 10 diverges exponentially for 
p -* ro, the constant H = 0. 

Making the substitution 

(5.26) 

and considering (5.24) and (5.25) with H = 0, we see 
that Eq. (5.17) becomes 

d (2 C
2
) 1 + kp-2C 

- (pDp) - n p + - D = nF _ Kl(np). 
dp p p c 

(5.27) 
The general solution of this equation is 

B = PKinp) + Q1c(np) 

1
00 (1 + kp,-2C) 

+ F G(np, np') '-c K 1(np') dp', 
o p 

(5.28) 

P, Q, and F are constants, and the Green's function is 
given by 

G(np, np') = Ic(np')Kc(np), p' < p, 

= Kc(np')lc(np), p' > p. (5.29) 

As p -* 0, the requirement that {3 diverge no worse 
than "P (i.e., In p) demands P = 0. The analogous 
requirement for p -* 00 demands Q = 0. The integral 
in (5.28) diverges; hence F = 0. We conclude that no 
unstable solution of the type being sought exists for 
Case I. 

In considering the general solution the possibility 
of nontrivial homogeneous solutions of the homo­
geneous equation existing and of the inhomogeneous 
equation existing were considered a~ the same time. 
Usually when a nontrivial solution exists satisfying 
the boundary conditions, there is no Green's function. 

It is of some interest to look for the possibility of 
undamped oscillatory solutions where 

rx(p, t) = rx(p) sin nt, 

pep, t) = pep) sin nt. 

(5.30) 

(5.31) 

The most general solution of Eqs. (5.18) and t5.17) 
with the substitution (5.26) is 

(I.(p) = FJo(np) + HYo(np), 

B(p) = PJc(np) + QYc(np) 

1
00 1 + kp,-2C 

+ G(np, np') ,-2c 
o p 

X [FJ1(np') + HY1(np')] dp', (5.32) 
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where the Green's function is given by 

G(np, np') = t7TJc(np) Yc(np') , p < p', (5.33) 

= t7T Yc(np)Jc(np'), p' < p. 

Again this examines the possibility of a nontrivial 
solution to the homogeneous problem and a Green's 
function at the same time. 

Consider the behavior as p ~ 0. In this limit, 
Ye ~ p-c and {J ~ p-2c. This diverges faster than 1p; 

hence the coefficient of Ye must vanish. Moreover, F 
and H both must vanish since the integrals diverge. 
An oscillatory solution is possible where 

(J..(p) = 0, 

(J(p, t) = P p-e 2 Jinp) sin nt. (S.34) 
1 + kp- e 

It should be observed that this oscillatory solution 
does not at any time change the limiting ratio of the 
circumference to the radius of a circle [Eq. (S.22)]. 

Case II: RoO = -R/, RoO = -R22 

With the substitutions 

f3 = !(J.. + f, 
(J.. = [p-e/(I + kp-2C)]A, 

Eqs. (S.19) and (5.20) become 

(S.3S) 

(S.36) 

fpp - ftt +.[g = 0, (5.37) 
p 

A c2 

App - A tt + -.!! ---;A 
p p 

= -4[(c + l)pC-l + (1 - c)kp-C-1lfp • (5.38) 

Solutions of these equations are given by 

J=FKo(np)sinhnt, (5.39) 

A = QK1cl(np) sinh nt 

+ sinh nt F L'o G(np, np') 

X [(c + l)p'C + (1 - c)kp'-C]K1(np') dp'. (5.40) 

The Green's function is 

G(np, np') = K1cl(np')IlcI(np), p < p', 

= Ilcl(np')K1cl(np), pi < p. (S.41) 

Terms in the solutions involving Io(np) and Ilcl(np) 
have not been included because they diverge too fast 
at infinity. The integral in (5.40) diverges requiring 
F = ° and leaving as a possibly unstable solution 

2{J = (J.. = Q p-C 2 K1cl(np) sinh nt. (5.42) 
1 + kp- c 

(J.. and f3 are well behaved both at p = ° and p = 00 

when c is negative. 
It is necessary to compare the physical components 

of the perturbed Ricci tensor with the unperturbed 
physical components. If a perturbed physical com­
ponent of the Ricci tensor diverges anywhere, it must 
do so more slowly than some component of the 
unperturbed Ricci tensor. All pbysical components 
are well behaved in this sense except 

PR1
0 = e2'4'-21 (21pp{Jt - ;) 

Qne-2a cosh nt 
= p2C2+2C+l(1 + kp-2e), 

X (2c + 1 - kcp-2e)p-cK 1cl(np). (S.43) 

This is to be compared with P RoO [Eq. (4.12)]. For 
small p, the ratio 

(5.44) 

The ratio diverges if c < -! and converges if c > -t. 
Hence, if c < -t, the boundary condition requires Q 
to vanish, and the system is stable. For c > -! the 
system is unstable. c > -! corresponds, of course, to 
an enormous negative mass density along the central 
axis. 

If the demand had been that (J..(O, t) vanish as a 
consequence of the requirement that the limiting ratio 
of circumference to radius of a small circle not be 
changed by the perturbation [Eq. (5.22)], Q would 
have to vanish for all c, since (J..(O, t), although finite, 
is not equal to zero. Hence, the system would be stable 
for all c. With either boundary condition, all systems 
with positive masses and even with small (not huge) 
negative mass densities are predicted to be stable. It 
has been shown14 for the case of vanishing central 
mass density that the stability against radial perturba­
tion guarantees stability against nonradial perturba­
tion as well. This can be generalized in an obvious way 
to show that the stability against nonradial perturba­
tion would hold even if mass were present. 

The possibility of undamped oscillatory perturbed 
solutions for Case II will be demonstrated by exhibit­
ing a solution describing such behavior: 

-e 

2f3 = (J.. = Q p 2 J'c,(np) sin nt. (5.45) 
1 + kp- c 

This satisfies the appropriate equations and all 
boundary conditions including the requirement 
(J..(O, t) = O. It can, in fact, be shown to be the most 
general solution satisfying either the boundary condi­
tions on the physical components of the Ricci tensor 
or the condition requiring (J..(O, t) = 0. 
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For a generalized hypergeometric function .F.(z) with positive integral differences between certain 
numerator and denominator parameters, a formula expressing the .F.(z) as a finite sum of lower-order 
functions is proved. From this formula, Minton's two summation theorems for p = q + 1, z = 1 are 
deduced, one of these under less restrictive conditions than assumed by Minton. 

This paper deals with generalized hypergeometric functions 'PF/aI.···. a'P; bI , ... , bq; z) having the 
special property that, with suitable enumeration of parameters, ai = bi + mi , i = 1, 2,"', n, where 
m1 , ••• , mn are positive integers and n ~ min (p, q). It is assumed that p ~ q + I and that no denominator 
parame~er b is a negative integer or zero. A function of this type may be expressed as a finite sum of 
'P-nFq-n functions in the following way: 

'PFq[bI + ml,"', bn + mn, an+!,···. a'P; Z] 
bI ,···, bn• bn+!.···. bq 

=~"'~A('''' ')In F [an+I+Jn"",a'P+Jn;Z] (1) £." .£., h , , in Z 'P-n q-n , 
il=O in=O bn+1 + I n ,''', bq + I n 

where 

In=il+'''+in' (2) 

and 

AUI, ... ,in) = ("!1) ... ("!n)(b 2 + m2)jl(ba+ ma)J.' .. (b n + mn)Jn-l(an+1hn' .. (a'Ph .. , 
h in (b1h 1(b 2)J • ... (bnh n(bn+1)J .. ... (bqhn 

(3) 

(C)r = r(c + r)jr(c) , (4) 

By the principle of analytical continuation, Eq. (1) is valid whenever the functions involved are all 
analytic; restrictions upon the parameters imposed in the proof may thus be removed, 

The proof is based upon an Eulerian integral representation given by Erdelyi,I viz., 

F (a ... a . b .. , b' z) = r(b1)r(1 - b1 + a1) .J.... X iO
+)(l - t)b1-a1-y(t) dt (5) 

'P q 1, ''P' 1 , ,q, r() (. (b » 2 ' a1 exp 11T 1 - a1 1T 0 

where 
(6) 
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For a generalized hypergeometric function .F.(z) with positive integral differences between certain 
numerator and denominator parameters, a formula expressing the .F.(z) as a finite sum of lower-order 
functions is proved. From this formula, Minton's two summation theorems for p = q + 1, z = 1 are 
deduced, one of these under less restrictive conditions than assumed by Minton. 

This paper deals with generalized hypergeometric functions 'PF/aI.···. a'P; bI , ... , bq; z) having the 
special property that, with suitable enumeration of parameters, ai = bi + mi , i = 1, 2,"', n, where 
m1 , ••• , mn are positive integers and n ~ min (p, q). It is assumed that p ~ q + I and that no denominator 
parame~er b is a negative integer or zero. A function of this type may be expressed as a finite sum of 
'P-nFq-n functions in the following way: 

'PFq[bI + ml,"', bn + mn, an+!,···. a'P; Z] 
bI ,···, bn• bn+!.···. bq 

=~"'~A('''' ')In F [an+I+Jn"",a'P+Jn;Z] (1) £." .£., h , , in Z 'P-n q-n , 
il=O in=O bn+1 + I n ,''', bq + I n 

where 

In=il+'''+in' (2) 

and 

AUI, ... ,in) = ("!1) ... ("!n)(b 2 + m2)jl(ba+ ma)J.' .. (b n + mn)Jn-l(an+1hn' .. (a'Ph .. , 
h in (b1h 1(b 2)J • ... (bnh n(bn+1)J .. ... (bqhn 

(3) 

(C)r = r(c + r)jr(c) , (4) 

By the principle of analytical continuation, Eq. (1) is valid whenever the functions involved are all 
analytic; restrictions upon the parameters imposed in the proof may thus be removed, 

The proof is based upon an Eulerian integral representation given by Erdelyi,I viz., 

F (a ... a . b .. , b' z) = r(b1)r(1 - b1 + a1) .J.... X iO
+)(l - t)b1-a1-y(t) dt (5) 

'P q 1, ''P' 1 , ,q, r() (. (b » 2 ' a1 exp 11T 1 - a1 1T 0 

where 
(6) 
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valid when Re a l > 0, bl is not a negative integer or 
zero, and larg (1 - z)1 < 7r if P = q + 1. Now, as 
al = bl + ml , the branch point of the integrand at 
t = 1 disappears, and the integral takes the form 
S c J(t) dtl(t - 1)"'1+1, where C is a clo~ed conto~r 
encircling the point t = 1 counterclockw1se ~nd J 1S 
analytic within and on C. From Cauchy's Integral 
formula, we then find that Eq. (5) becomes 

F [b l + ml' a2 ,"', ap ; z] = D
m
tj(I) , (7) 

p q b1 , b2, ... , b q (b i )"'l 

D denoting differentiation with respect to t. Applica­
tion of Leibniz's differentiation formula and the well­
known expression for the derivative of a pFq then 
yields 

1)F
q
[b 1 + ml' a2,"', a1); Z] 

b1 , b2, ... , bq 

= Iz i (m 1)(a2);'" (a p ); 

;=0 i (b1);'" (bq ); 

F [a 2+ i ,···,a1)+i;z]. (8) 
X 1)-1 q-l b

2 
+ i, ... , b

q 
+ i 

This result can itself be applied to each member of its 
rhs if a2 = b2 + m2' etc. It is easily seen that the 
general result (I) is obtained in this way. 

A special case (p = 3, q = 2) of Eq. (8) has been 
derived by Rosler2 from the series representation. 

From formula (l) we now derive two summation 
theorems for p = q + 1, z = 1. These have been 
given recently by Minton,S the first one, however, 
under more restrictive conditions than those given 
below. 

To deduce the first theorem, we take q = p - 1 = 
n + 1, an+! = b = bn+1 - 1, z = 1, and for brevity 
an+2 = a. The hypergeometric functions in the 
multiple sum of Eq. (1) then become 2Fl(1)'S, which 
all exist provided that 

Re (-a) > ml + ... + mn - 1. (9) 

By Gauss' summation theorem we then get, after some 
rearrangements, 

n+2F"+I(bl + ml"", bn + mn, b, a; 
b1 , ••• , b." b + 1; 1) 

_ r( b + 1)r(1 - a) ~ ... ~ B (. '" .) 
- "'" "",., it, ,In' reb + 1 - a) iI=O ;,,=0 

where 

( . .) (b + Ih" ( l)J"A(' . ) Bn Jl, ... ,In = (a)J" - it, ... ,In . 

Next, the definition (3) is applied, the binomial 
coefficients being written in the form (-I )1( -m);/j!; 

this leads to 

Bn(jl"" ,in) = Bn-l(ji,'" ,in-i) 
(b n + mnh"-l (-mn);"(b + I n_I ); .. 

X (b nh"_
l 

jn~ (b n + J n-l)l.. • 

The terms containing jn obviously constitute a 
terminating 2Fl(1), which is summed by Gauss' theo­
rem. After some rearrangements we obtain (summa­
tion limits understood) 

~ Bn(jl"" ,in) 
;1.···.; .. 

(bn + mn)-b '" B ( . .) = "'" n-l it, ... ,In-l . 
(bnLb 1 .... ·.;"-1 

Repeating this procedure, we finally arrive at Minton's 
first theorem, 

n+2Fn+!(bl + m1 ,"', bn + mn, b, a; 
b1 , ••• , bn , b + 1; 1) 

= reb + l)r(1 - a) ii (bk + mk)-b, (10) 

reb + 1 - a) k=l (bkLb 
valid under the condition (9), i.e., if the lhs of (10) 
exists at all. In Minton's proof,3 a was require9 to be 
negative integral. 

The particular case n = 1 of Eq. (10) was obtained 
by Mitra4 by series manipulations. 

The second summation theorem may be deduced 
from the first3 by letting b ~ 00. It may, however, also 
be deduced directly from Eq. (1) by taking q = 
p - I = n, an+! = - (ml + ... + mn), and z -'--+ I. 
The hypergeometric functions in the multiple sum 
of Eq. (I) then reduce to power functions (1 - z)". 
where h = -an+1 - I n and h ~ 0 for all terms. 
When z -+ I, all terms of the multiple sum will thus 
tend to zero, except the one for which -an+! = I n , 

i.e.,ji = m i , i = 1,2, ... , n; the limit of this term is 
A(ml' . ' .. ,mn)' After some reductions we find the 
summation formula 

n+lFn(bl + mI"", bn + mn, -(ml + '" + mn); 
b1 ,"',bn ;1) 

= (-l)m1+"'+m"(ml + ... + mn)!, (11) 

(b1)m1' .. (bn)m .. 
which is easily transformed to the form given by 
Minton.3 

It may be of interest to compare Eq. (11) with the 
special case of (10) obtained by takingbn = b, mn = 1 
and then replacing n - 1 by n, viz., 

n+lFn(bl + m1 ,'" ,bn + m .. ,a;b1 ,··· ,bn; 1) = 0, 
Re (-a) > m1 + ... + m n . (12) 

1 A. Erdelyi, Quart. J. Math. Oxford Ser. 8, 267 (1937). 
• R. Rosier, Z. Angew. Math. Mech. 43, 433 (1963). 
3 B. M. Minton, J. Math. Phys. 11, 1375 (1970). 
• S. C. Mitra, J. Indian Math. Soc. (N.S.) 6, 84 (1942). 
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A generalized master equation of the Van Hove type is derived for inhomogeneous systems with 
arbitrary initial conditions in such a way as to display explicitly the renormalized "free" propagation, as 
well as the "gain-loss" terms. The corresponding Wigner function formulation of this equation is given 
as a representation appropriate for the study of kinetic equations for inhomogeneous systems from the 
point of view of master equations. The results are formally exact. 

1. INTRODUCTION 
The Heisenberg equations of motion for an opera­

tor, or the von Neumann equation: for the density 
matrix, are seldom the most convenient form in which 
to express the time dependence of the quantities of 
interest in many-body systems. A number of equations, 
formally equivalent to the above, have been derived 
on the basis of rearranging a formal solution to the 
Heisenberg equations to group relevant terms.1 The 
'point of these manipulations is that a rather simple 
approximation to this new form yields solutions 
which would be difficult to obtain directly otherwise; 
they typically have a close similarity to the Pauli 
master equation.2 The generalized master equation 
(GME) of Van Hove3 is an exact rate equation for the 
spectral decomposition of the matrix elements of the 
two time-development operators, [U*(t)]ii[U(t)]kn, 
in a representation which diagonalizes the unperturbed 
Hamiltonian. It was originally derived for the occupa­
tion density [U*(t)]ii[U(t)]ii' and was extended by 
Janner' and Swenson5 to include the interference 
term [U*(t)]ii[U(t)]jn' These latter results are suffi­
cient to determine the time development of an opera­
tor diagonal in the unperturbed representation. 

Here, the systems of interest are assumed to be 
inhomogeneous, which means the operators whose 
time dependence is desired (in particular, the density 
matrix) are nondiagonal. The full four-index quantity 
Ui~Ukn is required in this case, and certain questions 
arise in the derivation of a corresponding GME. The 
first concerns uniqueness. Three different GME's 
were derived by Peterson and Quay,6 and it is shown 
below (Sec. 4) that there are in fact an infinite number 
of GME's possible. Therefore, as observed in Ref. 6, 
additional constraints are needed to fix the most 
appropriate form for the problems of statistical 
mechanics. The second problem is to obtain a form 
which demonstrates explicitly the contribution from 
unperturbed propagation or free streaming. This con­
tribution vanishes for the case of diagonal operators, 
but is nonzero for inhomogeneous cases (although 

the forms obtained in Ref. 6 contain this only 
implicitly in the inhomogeneous term). Since all 
kinetic equations, for which the GME may be con­
sidered a prototype, have an explicit streaming term, 
it is clearly desirable to write a GME in this form. 
Finally, the effects of the interaction should be identi­
fied as contributing either to the "gain-loss" term 
responsible for damping or to a renormalization of the 
energies associated with propagation. 

The problem of characterizing the effects of the 
interaction has been solved, at least formally, by Van 
Hove for systems satisfying his "diagonal singularity" 
conditions.3 He first considered self-energy, or cloud 
effects of field theories with no metastable states,7 

and obtained, in addition to an explanation of how 
these effects can arise, exact expressions for the 
renormalized energies of propagation. The subsequent 
derivation of a GME for dissipative systems dealt 
predominantly with the damping phenomena, and, 
although energy renormalization effects still occur, 
consideration of diagonal operators did not give rise 
to the renormalized propagation term. Here, a GME 
for the four-index quantity U~Ukn will be obtained 
which explicitly incorporates the renormalized energies 
in a streaming term and a generalization of the gain­
loss term. The main difference in the gain-loss term 
comes about ftom the need to extend Van Hove's 
prescription for finding the important terms in the 
thermodynamic limit to apply for nondiagonal 
operators. The result is a different definition of the 
"generalized transition probabilities," which reduces 
to the usual definition for homogeneous systems. 
This affects only the gain term. The loss terms arise 
from collecting terms in the same U, and the non­
diagonality is unimportant. 

In obtaining this form for the GME certain aspects 
of the lack of 'uniqueness become clearer. Peterson and 
Quay's equations differ from that given here in two 
important ways. First, the contributions from propaga­
tion are contained only implicitly, at least in part, in 
their inhomogeneous terms. Second, their equations 

272 
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do not all reduce to those of Van.Hove, lanner, and 
Swenson, or even to any self-determined equations, 
for the homogeneous case. The one that does reduce 
to these equations does not have an appropriate 
Wigner function (or phase space distribution function) 
representation.s These differences are due largely to a 
freedom to transfer contributions between an in­
homogeneous term and the gain-loss term. This 
freedom is eliminated if one requires the presence of a 
free streaming term, an appropriate definition of the 
transition probabilities based on an extension of the 
4iagonal singularity condition, and reduction to 
previously obtained equations for the homogeneous 
case. 

The derivation here is heavily indebted to that of 
Peterson and. Quay and follows, as closely as possible, 
their notation. The Wigner function formulation9 of 
these equations is given, and various limits are 
discussed. 

2. INHOMOGENEOUS SYSTEMS 

The expectation value of a given time-dependent 
operator may be represented as the trace of a time­
dependent density matrix times the initial value of the 
operator, and applies for a pure state as well as for an 
ensemble of states. lO Therefore, it is sufficient to obtain 
a GME for the density matrix. The many-body 
density matrix may be given as a formal solution to the 
von Neumann equation 

pet) = U(t)p(O)U*(t), (2.1) 

where U(t) = e-illt (in units such that Ii = I) and the 
Hamiltonian H is assumed to have a natural or useful 
separation into unperturbed and perturbation parts, 

H= Ho + V. (2.2) 

The usual choice for Ho is the free N-particle Hamil­
tonian and is assumed to be the case here.n The 
matrix elements of p(t) in the representation which 
diagonalizes Ho are 

p(t; PI' P2) = ! U*(t; P3' pz)U(t: PI, P4)P(O; P4' P3), 
P!l'P.t. 

(2.3) 

where F(t; P, p') = (pi F(t) Ip'). Here Ip) is a many­
body eigenstate of Ho, and p denotes the set of 
quantum numbers specifying the state. These quantum 
numbers, e.g., sets of single particle momenta, become 
continuously distributed in the infinite-volume thermo­
dynamic limit ,11 and we consider the system to be large 
enough to approximate this limit. The time dependence 
of a given operator A is calculated from 

1'(t) = Tr p(t)A(O) = ! p(t; PI' P2)A(O; P2' PI)' 
Pl,P2 

We shall mean by an inhomogeneous system one for 
which the operators of interest, A, do not have vanish­
ing matrix elements for all PI ¢ P2' 

The matrix elements U * (t; P3 ,Pz) and U (t; PI ,P 4) 
may be represented in terms of the resolvent operator 
for the Hamiltonian5 

u*(t; Pa, P2)U(t; PI' P4) 

= -(27r)-2 f f dZ l dz2:JlIZ(P3, Pz, PI' P4)ei
(Zl-Z.)I, 

Jel JC2 
(2.4) 

where 

:R"l2(P3' P2, PI, P4) = Rl(Pa, P2)R2(Pl' P4), 

RI = (H - Zl)-1, R2 = (H - Z2)-1. (2.5) 

The contours of integration, Cl and C2 , enclose a 
sufficiently large portion of the real axis (H is Her­
mitian, and it will be assumed that the spectrum is 
bounded for finite volume). The GME follows from 
an identity for :R,12(Pa, P2' PI' P4)' 

The resolvent operator may be written as the sum 
of its diagonal and nondiagonal parts. This formal 
separation is important to the derivation because it 
groups terms surviving in the thermodynamic limit 
according to the diagonal singularity conditions of 
Van Hove discussed below. Here we follow the 
method of Swenson to obtain a GME without re­
course to the infinite-order perturbation expansions 
of Van Hove. It is important, however, to realize that 
the role of the diagonal singularity conditions is 
implicit in the following separation into diagonal and 
nondiagonal parts: 

R= D + DND. (2.6) 

D is defined to be the diagonal part of R. It is con­
venient to introduce another diagonal operator G(z), 
by12 

D = [Ho + G(z) - Z]-l. (2.7) 

Equations for G(z), N(z), and D(z) may be obtained 
in terms of Ho and v.6 The definitions below generalize 
those introduced by Peterson and Quay: 

d12(PI' P2) == Dl(Pl) - D2(P2), 

g12(Pl' P2) == Gl(Pl) - G2(pz), (2.8) 

~12(Pl , Pa) == Dl(Pl)D2(P2)' 

In terms of these quantities, we have 

jt12(Pa, P2' PI' P4) = ~12(P2' Pl)Q12(Pa, Pz, PI' P4), 

(2.9) 
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where 

Q12(Pa, PZ' PI' P4) = [15:1>3.:1>2 + Dl(Pa)Nl(Pa, PZ)] 

X [15 111 ' 114 + NZ(Pl, P4)D2(P4)]' (2.10) 

Multiply Eq. (2.9) by [D2(PI»)-1 - [DI(P2»)-1 = 
[E(PI) - E(pz) - gI2(pZ' PI) + ZI - zz) to get 

{(ZI - Z2) - [E(p2) - £(PI)] - gI2(pZ' PI)} 

X ;R12(Pa, Pz, PI' P4) 

= dIZ(P2, PI)QI2(Pa , pz, PI, P4)' (2.11) 

Here £(p) is the eigenvalue of Ho in state I p). The ma­
trix g12(P2 , PI) may be written as 

g12(pZ' PI) = HgI2(PI, PI) + g12(pz, Pz)] 

+ [a12(p2) - a12(PI)], 

a12(p) = t[GI(p) + G2(p»). (2.12) 

The reason for this separation is to group terms which 
will give rise to real and imaginary contributions in the 
time representation (see below). The real terms arise 
from a and are closely related to the renormalized 
energies of Van Hove. Further, g12 may be expressed 
in terms of the generalized transition probabilities of 
Van Hove [see Eq. (2.l6)l responsible for finite 
damping effects, whereas the a's are not. Thus the 
point of the above separation is to pick out the 
renormalization terms from the damping terms in g12. 
These comments will be borne out below. 

To proceed, it is useful to briefly discuss the 
diagonal singularity condition. We wish to obtain an 
expression for the quantity RIARz which collects 
terms important in the thermodynamic limit. These 
terms are special because they are responsible for 
the damping effects and renormalization observed in 
large systems,' and we identify them in the following 
way. The matrix elements of an operator F, which is a 
function of diagonal operators and the potential V, 
are proportional to 15(p - p') due to conservation of 
momentum. The argument of this 15 function may be 
zero in many different ways since p and p' repre::;ent 
3N variables. In particular, there is a term 

N 

II 15(p", - p:), 
rz=l 

where p", and p: are the single-particle momenta. 
Since we are actually considering a very large but 
finite system, the notation is 

with n being the volume and !5Kr the Kronecker delta. 
Then, each single-particle 15 function contributes a 
factor n. Clearly, the term with II~I !5(p", - p:) has 

the most 15 functions of all those which yield b(p - p'), 
and therefore dominates in the infinite-volume limit. 
If each of the single-particle momenta is the same in 
the initial and final states, then the states are the same, 
Ip) = Ii), and the dominant contribution to (pi F Ip') 
is the diagonal element. Consider now RIARz. There 
are diagonal singularities coming from each R; these 
give rise to the contributions g12(PI ,PI) and g12(P2 , P2) 
in (2.12). If A is diagonal, there are also diagonal 
singularities coming from products of terms from both 
RI and R2. These latter are the diagonal singularities 
of DINIDIAD2N2Dz [see Eq. (2.6)] or, equivalently, 
terms with NI(Pa, PI)N2(PI ,Pa)' The generalized 
transition probabilities occurring in Van Hove's gain­
loss terms are defined as the irreducible parts of these 
contributions only, since they are precisely the ones 
responsible for the damping effects. 

Now consider the case at hand, i.e., A nondiagonal. 
There are still the contributions to RIAR2 from the 
diagonal singularities of RI and R2 since they do not 
depend on A. These are again given in the gI2(PI, PI), 
gI2(P2' P2) terms. However, the diagonal singularity 
condition does not, in general, give the dominant term 
from contributions involving terms from both R2 and 
RI. The reason for this is that 

may not be proportional to 15(Pa - P4)' Therefore, we 
have to find a new prescription for picking out the 
dominant term in 

NI(Pa, Pz)A(pz, pz + k)NZ(pz + k,P4) 

[here A(pz, PI) has been written A(pz, P2 + k)]. 
Since N2 and NI individually conserve momentum, we 
have 

NI(Pa, PZ)A(P2'PZ + k)N2(P2 + k, P4) 

ex; b(P4 - P3 - k)A(P2' P2 + k). 

However, it is clear that the dominant term is the one 
with 

for the same reasons as discussed above, i.e., it has the 
most factors of n. This implies Ip~) = IPa + k), and 
the singularity does not occur on the diagonal. The 
relevant contribution is now 

If the operator A conserves momentum, then 

A(pz, pz + k) ex; b(k), 
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and the diagonal singularity condition is regained 
even if A is nondiagonal. (In the following for 
simplicity it is assumed A has no part diagonal in the 
momentum.) The failure of the diagonal singularity 
condition for inhomogeneous systems has been 
discussed by Fujita, I who circumvents it by a con­
nected diagram prescription for choosing the proper 

terms. 
These observations on the dominant terms in the 

thermodynamic limit indicate that the generalized 
transition probabilities should be defined in terms of 
NI(Pa, P2)N2(P2 + k, Pa + k) instead of 

as in the homogeneous case. Therefore, by analogy 
we define two functions, Wand V: 

NI(Pa' P2)N2(P2 + k, Pa + k) 

= W12(Pa, P2, P2 + k, Pa + k) 

+ L WI2(p', P2' P2 + k, P' + k)'J)I\p', P' + k) 
p' 

X NI(Pa, p')N\p' + k, Pa + k), 

VI2(Pa, P2' P2 + k, P4) 

= QI2(Pa, P2' P2 + k, P4) 

- .L NI(p', P2)N2(P2 + k, P' + k)'J)12(p', p' + k) 
p' 

These definitions, with Eq. (2.9), lead to 

QI2(Pa, P2 , P2 + k, P4) 

= VI2(Pa, P2, P2 + k, P4) 

(2.13) 

+ .L WI2(p', P2, P2 + k, P' + k) 
p' 

X ~RP(Pa, p', P' + k, P4)' (2.14) 

The definitions (2.13) are the same as those of 
Swenson and Janner, for k = O. They are the samel3 

as Van Hove's if, in addition, P3 = P4' The transition 
probability W in (2.13) has been defined in terms of 
that part of NIN2 which dominates in the thermo­
dynamic limit. This is not an approximation, even for 
finite volumes, but rather a specific choice of terms to 
be gathered in the gain term [second term on the right 
of (2.14)]. While other definitions of Wand V are 
possible, leading to a form like (2.14), they do not 
have the physical significance implied by the singularity 
conditions; i.e., it is precisely the singular terms which 
are responsible for the existence of damping associated 
with the thermodynamic limit, and no others. 7 

Combining Eqs. (2.11), (2.12), and (2.14) gives 

{(Zl - Z2) - [E(P2) - E(P2 + k)] 
- [~12(P2) _ ~12(P2 + k)]} 

X j{,l2(Pa, P2' P2 + k, P4) 

= d12(P2 , P2 + k) VI2(P3' P2' P2 + k, P4) 

+ .L dI2
(P2' P2 + k) 

p' 

X WI2(p', P2' P2 + k, P' + k) 

X :Jt12(Pa, p', P' + k, P4) 

+ t[gI2(P2' P2) + g12(P2 + k, P2 + k)] 

X :Jt12(Pa, P2' P2 + k, P4)' (2.15) 

It remains to express gI2(p, p) in terms of W. This 
may be done in the same way as outlined in the 
Appendix of Ref. 6, with the result 

gI2(p, p) = -.L dI2(p', p')WI2(p, p', p', p). (2.16) 
p' 

Use has been made of the fact that 

Wl2(p, p', p', p) = W21(p', p, p, p'), 

which follows from the definition of W. The desired 
identity for :Jt12 is now 

{(Zl - Z2) - [E(P2) - E(P2 + k)] 

- [~12(P2) _ ~12(P2 + k)]} 

X :RP(Pa, P2' P2 + k, P4) 

= d
I2

(P2' P2 + k)Vl\P3' P2, P2 + k, P4) 

+ .L {d
12

(P2' P2 + k) 
p' 

X W12(p', P2' P2 + k, P' + k) 

X :R}2(PaP', P' + k, P4) 

- ld12(p', p')[W12(P2, p', p', P2) 

+ W12(P2 + k, p', p', P2 + k)] 

X :R12(Pa, P2' P2 + k, P4)}' (2.17) 

Before continuing, we note that for k = 0 the equation 
of Janner and Swenson results; for k = 0 and Pa = P2' 
Van Hove's result is regained. 

The contours of integration in (2.4) may be de­
formed to give,5 for t > 0, 

U*(t; Pa, P2)U(t; P2 + k, Pa + k) 

= L:dEPE(t;P3,P2,P2 + k,Pa + k), (2.18) 

PE(t; Pa, P2' P2 + k, Pa + k) 

= t7T-2 L: dE':R,12(Pa, P2' P2 + k, Pa + k)e2tt(E'-i'l', 

(2.19) 
where now Z1 = E + E' - i'fj, Z2 = E - E' + i'fj, 
and 'fj is an arbitrarily small positive constant. The 
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quantity P E is then shown to satisfy 

a it PE(t; Pa, P2, P2 + k, P4) 

- iW(P2, P2 + k)PE(t; Pa, P2, P2 + k, P4) 

- i fdt'[LlE(t - t'; P2) - LlE(t - t'; P2 + k)J 

x PE(t'; Pa, P2, P2 + k, P4) 

=!E(t; Pa, P2, P2 + k, P4) 

+ 27T ~ rtdt'[WE(t - t'; p', P2, P2 + k, P' + k) 
1>' Jo 

x PE(t'; Pa, p', P' + k, P4) 

- UWE(t - t'; P2, p', p', pz) 

+ WE(t - t'; pz + k, p',p', P2 + k,) 

x PE(t'; Pa, P2, P2 + k, P4)J. (2.20) 

Here W(P2' Pz + k) = E(P2) - E(P2 + k) and 

LlE(t; p) = 7T-1 L:dE'LlI2(p)e2it(E'-i~), 

fE(t; Pa, P2, P2 + k, P4) 

= ti7T-2L:dE'dI2(P2' P2 + k) 

X V12(Pa, P2' P2 + k, p4)e2it(E'-i~), (2.21) 

WE(t, Pa, P2, P2 + k, P4) 

= ti7T-2L:dE'dIZ(P2' P2 + k) 

X WIZ(Pa, P2, P2 + k, p4)eZit(E'-i~). 

Finally, the spectral decomposition of pet) may be 
defined by 

PE(t; P2 + k, P2) = ~ PE(t; Pa, P2, P2 + k, P4) 
2'3,'" 

x p(O; p" Pa), 

pet; pz + k, pz) = L: dEpE(t; pz + k, Pz), (2.22) 

and it satisfies the GME 

~ PE(t; pz + k, P2) + iW(P2 + k, P2)PE(t; pz + k, pz) 

+ ifdt'[LlE(t - t'; P2 + k) - LlE(t - t'; P2)] 

X PE(t'; P2 + k, P2) 

= Plit; P2 + k, pz) 

+ 27T I rtdt'{WE(t - t'; p', P2, P2 + k, P' + k) 1>,Jo 
x PE(t'; P' + k, p') 

- t[WE(t - t'; P2, p', p', P2) 

+ WE(t - t'; P2 + k, p', p', P2 + k)] 

x PE(t'; pz + k, P2)}' (2.23) 

This is the desired result for the N-particle spectral 
density. It incorporates the renormalized energy 
differences in the streaming term on the left side and 
the proper contributions to the generalized transition 
probabilities WE on the right side. It remains to show 
that the LlE should indeed be grouped with the un­
perturbed motion and represents renormalization of 
the unperturbed energies. This requires that LlE(t; p) 
be real, and may be shown as follows: 

LlE(t; p) = 7T-Il:dE'UG(P; E + E' - i'Y}) 

+ G(p; E - E' + i'Y})]e2it(E'-i~), 

[LlE(t; p)]* = 7T-Il:dE'UG*(P; E + E' - i'l'}) 

+ G*(p; E - E' + i'Y})]e-2it<E'+iq) 

= 7T-IL:dE'UG*(P; E - E' - i1]) 

+ G*(p; E + E' + i1])]e2it(E'-iq~ 
But since D is Hermitian, G is also, and therefore 
G*(p; z) = G(p; z*). Then 

[LlE(t; p)]* = 7T-Il:dE'HG(p; E - E' + i'Y}) 

+ G(p; E + E' - i'Y})Je2it(E'-i~). 

The function LlE(t; p) is thus seen to be the real part 
of the Fourier inversion of G(p). Van Hove has shown 
that the real part of G(p), denoted by K(p), determines 
the exact energy of the pth state &(p) as a solution to 

E(p) - E + K(p; E) = 0 
or 

K(p, &(p» = &(p) - E(p). (2.24) 

Therefore, K(p; E) may be used as the generator of a 
perturbation expansion for the exact energy.12 The 
function LlE(p; t) is the corresponding real function in 
time-dependent form [its time integral is indeed 
K(p; E)]. The time dependence represents a non­
Markovian nature of the renormalization which is 
familiar from other many-body approaches, e.g., 
Green's functions. Thus LlE(t; p) is a renormaliza­
tion suggestive of Van Hove's description of cloud 
effects. Equation (2.24) has been used in nuclear 
physics as the basis for a determination of the en­
ergies of the ground state and certain excited states.14 

The above discussion can be made explicit in the 
weak coupling limit. A coupling constant A is intro­
duced in the interaction potential, and the weak 
coupling limit is defined by A, -+- 0, t -+- 00, A,2t finite. 
Extensive discussion of the physical meaning of this 
limiting process may be found in Refs. 3 and 4. It is 
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assumed that there are two time scales, a microscopic 
time detined by a parameter 'To independent of). and a 
longer time scale 'Tl ,...., ).-2. The GME may be solved 
to tirst order in A to obtain the density matrix at the 
upper limit of the microscopic time scale. The G ME to 
order A2 may then be written for the long time behavior 
using the short time result as an initial condition. 
Therefore, for short times we consider (to order A) 

~ PE(t; P2 + k, Pa) + iW(P2 + k, P2)PE(t; P2 + k, P2) 

= PE(t; Pa + k, P2), 

PE(t; P2 + k, P2) 

= t i7T- 2L:dE' (nE(P2) - E - E' + inr i 

- [E(Pa + k) - E + E' - in]-I} 

x p(O; P2 + k, P2) 

- I {p(O; P2 + k, p')V(p', P2) 
ii' 

x [E(p') - E - E' + inr1 

- V(P2 + k, p')[E(p') - E + E' - ifJrl 

x p(O; p', P2)} )e2ltIE'-iQ). 

This equation may be integrated to give the result for 
short times. The behavior at the upper limit of the 
short time scale may be represented by the long time 
limit of the solution obtained. This is found to be 

PE(t; P2 + k, P2) 
.......,. e-iwlil2+k.'I>sltb(E - ![E(P2 + k) + E(P2)]) 

x (P(O; Pa + k, P2) - ~ {p(O; P2 + k, p') 

x Yep', P2)[E(p') - E(P2WI 
- V(P2 + k, p') 

x p(O; pi, P2)[E(p') - E(P2 + k)rl
}). (2.25) 

Just as with previous results for the diagonal elements, 
PE(t; P2 + k, Pa) is restricted to an energy shell. Here, 
however, there are two energies associated with the 
nondiagonal elements, and the solution is obtained on 
the arithmetic average of E(P2) and E(P2 + k). 

The GME on the long time scale is obtained by 
noting that PE(t; Pi + k, Pa) varies slowly on this 
scale,ls compared with tl.E and WE' and may be 
extracted from the time integrals. For t > TO the upper 
limit on the time integrations may be set to 00. The 
resulting GME is 

:t PE(t; Pa + k, P2) + iW(Pa + k, P2)PE(t; P2 + k, P2) 

+ i[dE(P2 + k) - tl.E(P2)]PE(t; P2 + k, Pa) 

= I {WEep', Pa, Pa + k, P' + k) 
ii' 

x PE(t; P' + k, pi) - t[WE(P2, p', p', P2) 

+ WE(P2 + k, pi, pi, P2 + k)]PE(t; P2 + k, P2)}, 

(2.26) 

where tl.E(p) and WE(PI, P2, Pa, P4) are the time 
integrals of tl.E(t; p) and 27TWE(t; PI, P2' Pa, P4)' 
respectively. Equation (2.26) is to be solved subject to 
the initial condition given by (2.25). Use of this 
initial condition and Eq. (2.22) allows one to write 

PE(t; P2 + k, Pa) 

= tJ(E - t[E(Pi + k) + E(P2)])P(t; P2 + k, P2)' 

Then Eq. (2.26) leads, after integration over E, to 

~ pet; P2 + k, P2) + iW(P2 + k, P2)P(t; P2 + k, P2) 

= 27T I {wIO)(p', P2' P2 + k, P' + k)p(t; p' + k, pi) 
ii' 

- t[W
(0)(P2' pi, pi + k, P2 + k) 

+ W(0
)(P2' P' + k, pi + k, P2)]P(t; P2 + k, P2)}' 

(2.27) 

Here wIO ) indicates the transition probabilities to 
lowest order in )., and will be discussed in the next 
section. Also, 

W(P2 + k, P2) = W(P2 + k, Pi) 

+ K(P2; HE(P2 + k) + E(P2)]) 

- K(Pa + k; UE(Pa + k) + E(P2)])' 

(2.28) 

To understand this last expression, recall from 
(2.24) that E(P2) - E + K(P2; E) = 0 implies E = 
&(p). Since there are two states involved, Pa + k and 
Pi, it is convenient to write 

E + t[&(P2) + &(P2 + k)] - E(P2) 

= K(P2; E + H&(P2 + k) + &(P2)]), 

- E + U&(P2) + &(P2 + k)] - E(P2 + k) 

= K(p2 + k; -E + H&(P2 + k) + &(P2)])' 

Both of these equations are satisfied by 

i.e., half the exact energy differences. Subtracting 
these equations gives 

2E + w(Pa + k, P2) = K(Pa; E + t[&(Pa) 

+ &(P2 + k))) - K(p2 + k; -E + l[&(P2 + k) 

+ &(P2)])' 
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A perturbation expansion for &(P2) - &(P2 + k) 
results by iterating about E = 0: 

&(P2 + k) - &(P2) = W(P2 + k, P2) 

+ K(P2 + k; HE(P2 + k) + E(P2)]) 

- K(P2; HE(P2 + k) + E(P2)]) + .... 
The terms shown on the right side are d-e same as 
those on the right side of (2.28). Thus W(P2 + k, P2) 
is the first term in a perturbation ex~ansion of 
&(P2 + k) - &(P2) about zero. Only the .owest order 
in A should be used since the weak coupling limit has 
been taken. This expansion of the energy differences 
about zero probably does not converge for states 
P2 + k and P2 with greatly different energies. This is 
because the W(P2 + k, P2) term in the GME gives a 
rapid oscillation to pet; P2 + k, P2), which invalidates 
the assumption- that it is smoothly varying. This 
difficulty can be avoided by considering the GME in 
an interaction representation defined by 

pet; P2 + k, P2) = e-iW (P2+k,P2>tp/(t; P2 + k, P2)' 

The PI may now be assumed smooth and the renor­
mali zed energies are given to second order in A, i.e., an 
expansion of f',(P2 + k) - &(P2) about w(P2 + k, P2), 
rather than about zero. Furthermore, the weak 
coupling limit must be considered strictly as a model, 
since the existence of the two time scales, related in a 
simple way to the coupling constant, is unproved. 

3. WIGNER FUNCTION FORMULATION 

For many purposes, such as investigating the 
foundations of kinetic theory, it is convenient to use 
the Wigner function rather than the density matrix. 9•16 

The weak coupling, Markovian limit of the corre­
sponding GME is called a master equation. Kac has 
discussed17 the derivation of kinetic equations for 
homogeneous systems from a model master equation. 
It has been conjectured17•18 that a master equation 
does not exist for inhomogeneous systems, or at least 
cannot serve as a basis for the kinetic theory of such 
systems. A useful starting point for an in',~stigation of 
this question is a GME for the Wigner function. The 
Wigner function is related to the density matrix in 
momentum representation by 

F(r, p; t) = 17'-3N J dp'e2ip"rp(p + p', p - p'). (3.1) 

Here rand p represent the 3N components of position 
and momentum, respectively, and N is the number of 
particles. The "integral" in (3.1) anticipates the infinite 
volume limit and is defined by 

JdP'O == (217'~N I O. 
V p' 

The Wigner function may be obtained by an "inver­
sion" of the Weyl prescription for quantizing classical 
phase functions. Thus the utility of the Wigner func­
tion in quantum mechanics is that it has many of the 
properties of the classical distribution functions 
defined on phase space. Other functions have been 
proposed as well. 

To make the connection with the GME, define the 
spectral decomposition of the Wigner function by 

F E(r, p; t) = 17'-3N J dp'e2ip·.rpE(P + p', p - p'; t), 

F(r, p; t) = I dEF E(r, p; t). (3.2) 

Equation (2.23) now gives the corresponding GME 
for the Wigner function: 

a p 
- F E(r, p; t) + - . VrF E(r, p; t) at m 

+ fdt' I dr'b.E(r - r', p; t - t')F E(r', p; t) 

= FE(r, p; t) + 217' fdt' J dr' J dp" 

X [wEer - r', p", p; t - t')F E(r', p"; t') 

- wEer - r', p, p"; t - t')F E(r', p; t')], (3.3) 

with 

b.E(r, p; t) = i17'-3N J dp' 

X e2iP·.r[b.E(t; p + p') - b.E(t; p - p')], 

wEer, p", p; t) 

= 17'-
3N 

(2:;N J dp'e
2ip

·.
r 

X WE(t; p" - p', p - p', p + p', p" + p'), 

wEer, P. p"; t) 

-17'-3N~Id I 

- (217'?N P 

X e2ip':rUWE(t; p - p', p", p", p - p') 

+ WE(t; p + p', p", p", p + p')], 

(3.4) 

FE(r, p; t) = 17'3N J dp'e2iP"'PE(t; p + p', p - p'). 

It follows from the discussion following (2.23) that 
b.E(r, p; t) is real. It is also straightforward to show 
the transition probabilities, 

wEer, p", p; t) and wEer, p, p"; t), 

are also real, as they should be. 
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Equation (3.3) is nonlocal in both the space and 
time variables, reflecting the fact that in general there 
are spatial correlations as well as "memory effects." 
To demonstrate that these two features are quite 
independent, we consider first the limit of a weakly 
inhomogeneous system. In this case PE(t; p + pi, 
P - pi) is a peaked function of pi about pi = 0, and 
the integrands in (3.4) may be expanded about pi = ° 
to give, to lowest order, 

00) a a 
!:lE (r, p; t) = - b(r) -!:lE(t; p), 

ar ap 

(0)( " ) VN ~() (. " ) WE r,p,p;t =(27T)3NurwEt,p,P 

= w~O)(r, p", p; t). (3.5) 

This gives the weak inhomogeneity approximation to 
(3.3): 

~ FE(r, p; t) + ~. VrFE(r, p; t) 
at m 

+ rtdt(~'!:lE(t- tl;P»)~FE(r,p;tl) 
Jo ap ar 

= F'iEO)(r, p; t) + 27T f dt' f dp" 

vN 
x ------aN [WE(t - t'; p", p)FE(r, p"; t') 

(27T) 

- WE(t - t'; p, p")F E(r, p; t')]. (3.6) 

The gain-loss term in (3.6) is the same as that obtained 
by Van Hove, Janner, and Swenson for the homo­
geneous case. Therefore, the principle difference for 
the weakly inhomogeneous system is the presence of 
the streaming terms on the left side. The equation is 
still non-Markovian in time, although spatially local 
in this approximation. 

A further simplification occurs if, in addition, the 
weak coupling limit is taken. From (2.27) and (3.5) 
we obtain 

.E. F(r, p; t) + [1. + 1. K(p; E(P»] • V,F(r, p; t) 
at m ap 

= f dp"(j(p", p)bKr(E(p") - E(p» 

x [F(r, p"; t) - F(r, p; t)] (3.7) 
with 

VN 
(j(p" p) = --I(p"l v Ip)12. 

, (27T)3N 

The "collision integral" on the right of (3.7) is now 
just the gain-loss term of the Pauli equation. The 
streaming term may be written as p. VrF(r, p; t), 
where p is the renormalized momentum defined by 

p =(a/ap)f.,(p). In (3.7) we have p to first order, as 
follows from (2.24): 

1. + aa K(p; E(p)) = aa f.,w(p); 
m P p 

f.,(I)(p) == E(p) + K(p; E(p». 

Equivalently, the streaming term may be written in 
terms of an effective mass, p/m* . VrF(r, p; t), with 
m* == m[a&(p)/aE(p)]-I. 

Equation (3.7) may be considered the simplest 
generalization of the usual master equations to 
inhomogeneous systems. Its validity, of course, 
requires detailed investigation of the two limits taken. 
The derivation of the Boltzmann equation from (3.7) 
for homogeneous systems has been di'scussed by 
KacI7 and, in the context of a GME, by McLennan 
and Swenson.19 

4. DISCUSSION 

It was mentioned in the introduction that Peterson 
and Quay6 found more than one identity for 

:R,12(PI' P2' P3, P4)' 

In fact, there are an infinite number of such identities.20 

This can be seen by choosing to define yt2 by, for 
instance, 

QI2(P3' P2' PI' P4) 

= VI2(P3' P2' PI' P4) 

+ '2 A(WI2)P2,Pl.:l",p,,:R,I\P3' pi, p", P4), 
P',P" 

where A is an arbitrary linear function of W12. 
ExpressinggI2(p, p) in terms of W12 requires only that 
Wl2(p3' P2, PI, P4) reduce to Van Hove's definition for 

P3 = P4 and P2 = PI, and makes no use of the defini­
tion of yt2. Therefore, for various choices of A, one is 
merely transferring contributions of the gain term to, 
or from, the inhomogeneous term V. Indeed, if V is 
defined by 

QI2(P3' P2' PI> P4) 

= VI2(P3' P2, PI' P4) + '2 t dI2(p', pi) 
P' 

X (WI2(P2' pi, pi, P2) + WI2(PI' pi, pi, PI» 

x :R, I2(P3' P2, PI, P4), 

the gain-loss term vanishes! In the derivation pre­
sented here, V and Ware defined by choosing only 
those contributions for the gain-loss term which have 
special significance in the thermodynamic limit. The 
relevance of this choice is due to the usual meaning of 
the gain-loss term as the contribution responsible for 
dissipation. Thus, while other GME's may be obtained, 
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their "gain-loss" terms cannot be interpreted as such, 
and it is not clear how one would make a meaningful 
approximation to these equations without a reordering 
of terms according to the singularity conditions, or 
similar criteria. The separation of the resolvent 
operator into diagonal and nondiagonal parts is not 
sufficient by itself to pick out the important terms, as 
the above ambiguity suggests. In addition, one must 
choose the dominant terms from the product of 
resolvents (since the thermodynamic limit of the 
product is generally different from the product of the 
limits), and it was this analysis which led to the choice 
of definition for Wand V here. A similar situation 
exists with other methods for obtaining GME's. 
More elegant and direct derivations of general rate 
equations may be obtained by using projection 
operator techniques. However, there still remains the 
justification of a choice of projector, and again it 
requires specification of terms dominating the effects 
to be described. 

Finally, it should be mentioned that, although the 
above reordering is based on the behavior of large 
systems, the thermodynamic limit has not actually 
been taken in Eqs. (2.23) or (3.3). One must first 
multiply by the matrix elements of the operator to be 
averaged and sum, before actually carrying out the 
thermodynamic limit. Thus, while the densi~y matrix 
may not strictly exist in the thermodynamic limit, it is 
expected that calculations for a large but finite system 
will lead to expectation values whose limit is well 
defined. For an example of this, see Ref. 19. 
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An explicitly symmetric 2-variable expansion, convergent in the physical regions of both the sand t 
channels, is obtained for 2-body relativistic scattering amplitudes. Use is made of a symmetric mapping 
of the variables sand t onto a 2-dimensional hyperboloid, leading to an expansion in terms of Lame 
functions, which are the basis functions for an irreducible representation of the group 0(2,1) in our 
parametrization. 

INTRODUCTION hyperboloid v2 = 1. The scattering amplitude f(s, t) 
A series of previous publicationsI - 7 (for a more can then be considered to be a functionf(v) ofa single 

complete list of references see Refs. 6 and 7) was point v in relativistic velocity space, and, as s, t run 
devoted to the development of a scattering theory through the physical region of one channel, the point 
based on 2-variable expansions of relativistic scatter- v runs over the whole upper sheet of the considered 
ing amplitudes, just as the usual partial wave analysis hyperboloid. Having such a function f(v), we find it 
is based on a single-variable expansion at a fixed a relatively simple matter to expand this function in 
energy or the Regge scattering theory is based on a terms of the basis functions of the irreducible repre­
single-variable expansion for a fixed momentum sentations of the group of motions of the space v2 = 1, 
transfer. The aim of this approach is to make use of i.e., the group 0(3, 1). To make the above considera­
group representation theory to separate out as much tions explicit, it is necessary to choose a certain frame 
as possible of the kinematics of the reactions involved. of reference, like the center-of-mass system, the 
Indeed, all the dependence on kinematic parameters, brick-wall system, etc., to choose convenient co­
such as energy and scattering angle (or the Mandelstam ordinates on the hyperboloid, and to choose a 
variables s, t, and u), is separated into known functions convenient basis for the representations of 0(3, I). 
(the basis functions for group representations, the All these questions are linked to each other and were 
finite transformation matrix elements, or some discussed in detail in Refs. 1-7. In particular, it was 
similar objects), whereas the dynamics are transferred shown that different chains of reductions of the 
to the expansion coefficients, called the "Lorentz 0(3, 1) group to its subgroups lead to different 
amplitudes" in Refs. 1-7. coordinate systems, different bases for the group 

The desire to make as much use as possible of representations, and thus to different expansions of 
relativistic invariancc, in particular to incorporate the scattering amplitudes. 
0(3), 0(2, 1), E2 , and 0(3, 1) little group expansions The group reduction 0(3, 1)::> 0(3) ::> 0(2) was 
(see Refs. 7-10), leads to expansions based on an associated with spherical coordinates on a hyperboloid 
0(3, 1) group, isomorphic to the homogeneous and was used to consider scattering in the center-of­
Lorentz group, which underlies the kinematics of the mass frame. The 0(3) group then figured as the little 
special theory of relativity. group of a timelike vector-the total energy-momen-

Two-variable expansions, based on an 0(3, 1) tum PI + P2' The 2-variable expansion could be 
group, have so far been obtained for the 2-body interpreted as an 0(3) little group expansion in terms 
scattering of spinless particles with arbitrary (positive) of Pz (cos {}) (Legendre polynomials; {} is the c.m.s. 
rest masses, for arbitrary values of sand t. The method scattering angle), supplemented by an expansion of 
used was to consider the scattering amplitude as a the partial wave amplitude az(s) in terms of certain 
function of the relativistic velocities v = pjm (p = Legendre functions. 
{Po, p} is the energy-momentum, m is the rest mass, The reduction 0(3,1)::> 0(2,1) ::> 0(2) was as­
so that v2 = 1 on the mass shell) of all four particles sociated with hyperbolic coordinates on the hyper­
and then to express the components of three of the boloid and can be conveniently applied to scattering 
velocities in terms of the fourth, by making use of the in the brick -wall frame; and the 0(2, 1) subgroup 
conservation laws and choosing a specific frame of appears as the little group of a spacelike vector-the 
reference. In such a fashion, we obtain a mapping of momentum transfer PI - Pa [for t = (PI - Pa)2 < 0]. 
a physical region in the Mandelstam plane onto the The obtained 2-variable expansion can be interpreted 

281 
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as a Regge integral (the background integral of Regge 
pole theory or an integral along the path Re I = 
const> -t, where I is the complex angular momen­
tum), supplemented by a definite expansion for the 
Reggeized partial wave amplitude a(l, t). 

Finally, the reduction 0(3, 1) ::l E2::l 0(2), where 
E2 is the group of motions of an Euclidean plane, is. 
related to so-called horospheric coordinates1 and was 
used when considering scattering in a "light-velocity" 
frame of Ref. 4. The E2 group figures as the little 
group of a lightlike vector K(s, t), constructed out 
of the momenta of the four particles involved, 
which for unequal-mass scattering (ml ¥- ma and/or 
m2 ¥- m4) at t = 0 coincides with the momentum 
transfer. The obtained 2-variable expansion can be 
interpreted as a generalization of the E2 little group 
expansions for t = 0, again supplemented by a further 
expansion for the corresponding partial wave 
amplitude. 

The 0(3, 1) 2-variable expansions thus incorporate 
the 0(3),0(2, 1), and E21ittle group expansions. The 
0(3, 1) little group expansion9 for equal-mass scatter­
ing at t = 0 is also contained as a special limiting case. 

In the program described above, and indeed in any 
application of harmonic analysis on a group manifold 
or a homogeneous space, the choice of a specific basis 
for the representations is very important and deter­
mines the properties of the resulting expansion. An 
approach commonly used in physics is to choose a 
complete set of commuting operators, using operators 
in the enveloping algebra and possibly some others, 
and then to construct the basis functions as the set of 
common eigenfunctions of this complete set of 
operators. A standard way to construct such complete 
sets of commuting operators is to consider various 
possible chains of subgroups of the given group and 
to form the set out of the invariant operators of the 
group itself and of all the subgroups in the chain.ll .I.2 

In the last few years much attention has been 
devoted to the representation theory of the Poincare 
group, the Lorentz group 0(3, 1), and their subgroups. 
Various aspects of the representations of 0(3, 1) have 
been considered both in the "canonical basis," 
corresponding to an 0(3, 1) ::l 0(3) ::l 0(2) reduc­
tion,12-16 and in the "noncompact" bases, corre­
sponding to reductions to the 0(2, 1) or E2 groups16-20 
(the list of references is by no means complete). 

The group 0(2, 1) in a compact basis, corresponding 
to the reduction 0(2, 1) ::l 0(2), was first investigated 
by Bargmann.21 The noncompact reduction 0(2, 1) ::l 

0(1, 1) has been considered by numerous authors 
(see, e.g., Refs. 19,22, and 23). 

It should be stressed, however, that reducing a 

group to its subgroups is not the only manner in 
which complete sets of operators determining basis 
functions of representations can be constructed. 
Indeed, all that is necessary is to include the Casimir 
operators of the group its~lf-the choice of the re­
maining operators is arbitrary. A systematic investi­
gation of possible complete sets was initiated in Refs. 
2, 3, and 24 for all the little groups of the Poincare 
group. It was shown that if, for convenience, we 
restrict ourselves to second-order operators, then there 
exists only a finite number of nonequivalent complete 
sets. For the group 0(3) there are only two such sets, 
for E2 there are four, for 0(2, 1) there are nine, and 
for 0(3, 1) there are 34. It was shown3.24 that each 
independent set corresponds to one system of co­
ordinates, allowing the separation of variables25 in 
the Laplace-Beltrami equation for the space on which 
the corresponding group acts transitively. Those 
operators which were obtained as Casimir operators 
of subgroups correspond to the simplest types of 
coordinates; the other operators correspond to more 
complicated ones, of the elliptic type. 

From the point of view of group representation 
theory, it is of interest to investigate representations in 
these new bases, not related to any subgroups. As a 
by-product, one might hope to obtain new group­
theoretical properties of the special functions, which 
will appear as basis functions, matrix elements, or in 
some similar role (for the connection between special 
function theory and group representations, see, e.g., 
Vilenkin26). 

From the point of view of physical applications, we 
are led to a consideration of group representations in 
such an "elliptic" basis by the desire to incorporate 
crossing symmetry conveniently into the 2-variable 
expansion theory. Indeed, consider the scattering 
amplitude j(v), where v is a point on the hyperboloid 
v2 = 1. We can parametrize v, using arbitrary co­
ordinates, but we wish to obtain a convenient map­
ping of the Mandelstam plane onto it. In particular, if 
we succeed in constructing such a mapping that an 
interchange of, say, sand t corresponds to an inter­
change of two of the curvilinear coordinates of v and 
if the basis functions in the expansion have a simple 
behavior under such an interchange, then we can 
obtain explicitly crossing-symmetric expansions. 

In this paper we show that such a program is indeed 
feasible and leads to crossing symmetric expansions 
in terms of Lame functions. We limit ourselves to 
expansions based on an 0(2, 1) group, rather than 
0(3, 1); but this is purely for mathematical simplicity, 
and indeed an extension to the group 0(3, I) is in 
progress. 
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In Sec. I we discuss the hyperboloid v~ - vi - v; = 1 
on which 0(2, 1) acts transitively, consider coordinate 
systems allowing the separation of variables in the 
Laplace equation, and introduce the basis functions 
of representations of 0(2, 1). Section II is devoted to 
the mapping of s, t, and u onto this hyperboloid. In 
Sec. III we write an expansion of the scattering ampli­
tude for one of the two variables fixed in terms of 
LamHunctions, and in Sec. IV we derive the 2-variable 
expansion. In Sec. V we apply the derived expansions 
to obtain an explicitly crossing-symmetric expansion of 
a physical scattering amplitude, convergent in both 
the sand t physical regions. Possible future applica­
tions and developments are discussed in the final 
section. 

I. THE 0(2, 1) GROUP AND ELLIPTIC 
COORDINATES 

The Lorentz group in a 3-dimensional space with 
two spacelike dimensions and one timelike dimension 
can be defined as the group of linear transformations 
of a 3-dimensional vector space leaving the indefinite 
form v~ - vi - v~ invariant. In this paper we shall 
concentrate on one of the homogeneous spaces of this 
group, namely the upper sheet of the two sheeted 
hyperboloid 

v~-v~-v~=l, vo21. (1) 

The generators of the group will be denoted K1 , K2 
(boosts along the first and second axis), and La (a 
rotation in the 12 plane), satisfying the commutation 
relations 

so that the generators are represented by anti­
Hermitian operators in any unitary representation. 
The invariant of the group, i.e., the Casimir operator, 
can be written as 

~ = L~ - K~ - K~. (3) 

We shall consider the space of functions/(v) square 
integrable with respect to the invariant measure dV1 dv2/ 

Vo on the hyperboloid. Any function transforming 
under an irreducible representation of 0(2, 1) must, 
of course, be an eigenfunction of ~: 

(4) 

As stated in the introduction, basis functions fL(v) 
for an irreducible representation can be obtained by 
demanding that they should be the eigenfunctions of 
a further differential operator, commuting with 6., 
and possibly of some (discrete) reflection operators. 

A second-order symmetric differential operator, 
commuting with 6., can be written as 

L = aK; + b(K1K2 + K 2K 1) 

+ cK; + d(KILa + L3K1) 

+ e(K2La + LaK2) + fL~ (5) 

(where a, ... ,f are arbitrary constants), and it was 
shown in a previous paper3 that, by an inner auto­
morphism of the group and by taking linear combi­
nations of the transformed operator L' with 6., a 
general operator L can be reduced to one of nine 
inequivalent standard forms Ls. The basis functions 
can be taken as the common solutions of (4) and the 
equation 

L.JlI.(v) = hfu,(v). (6) 

It was also showna that Eqs. (4) and (6) allow the 
separation of variables so that we can write 

(7) 

where a and b are one of the nine types of curvilinear 
coordinates which do allow separation in (4). The 
problem of finding all such coordinate systems in 
2- and 3-dimensional spaces of constant curvature has 
been discussed by Olevsky, 25 and there is a one-to-one 
correspondencea between the operators Ls and the 
separable coordinate systems. The three simplest 
cases are those in which L. is simply the square of 
the generator of one of the three nonequivalent 
I-parameter subgroups of 0(2, 1): (La)2, (Kl)2, and 
(Kl + L3)2, corresponding, respectively, to rotations 
0(2), boosts 0(1, I), and Euclidean translations E1 , 

that is, to spherical, hyperbolic, and horocyclic 
coordinates,3.2& rerpectively. The remaining six opera­
tors Ls correspond to elliptic coordinates or various 
degenerations thereof and have so far received very 
little attention. 

Since our aim is to write crossing symmetric 
expansions of scattering amplitudes, we wish to 
choose separable coordinates for which the two 
functions 4>!h(a) and 'YLh(b) in (7) are the same. 
Clearly, the subgroup type coordinates do not satisfy 
this condition, since one function will be an exponen­
tial and the other a Legendre or cylindrical function. 
However, the two nondegenerate elliptic coordinate 
systems prove to be very convenient. 

Let us now consider one of these two coordinate 
systems; the other, less suitable for the two variable 
expansions, will be discussed in the Appendix. 

These coordinates3.25 on the hyperboloid v2 = 1 
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can be introduced algebraically by the relations 

a (PI - b)(b - P2) a (PI - c)(c - P2) 
Vo = , VI = , 

(a - b)(b - c) (a - c)(b - c) 

2 (PI - a)(a - P2) 
Va = , 

(a - b)(a - c) 
(8) 

Pa < C < b < a < PI' 

where PI and Pa are confocal coordinates and a, b, 
and c are constants. In order to uniformize these 
expressions, i.e., express Vo, VI' and V2 , instead of 
their squares, in such a fashion as to uniquely cover 
the hyperboloid, it is convenient to introduce the 
Jacobian elliptic functions,27 with 

PI - b = -(b - c) cn2 (IX, k), 

b - P2 = -(a - b) cn2 (fJ, k'). 

In terms of the new elliptic coordinates IX and fJ, we 
have 

with 

Vo = -cn (IX, k) cn (fJ, k'), 

VI = i sn (IX, k) dn (fJ, k'), 

Va = i dn (IX, k) sn (fJ, k') 

(9) 

k 2 = (b - c)/(o - c), k'2 = (0 - b)/(o - c), 

k 2 + k'a = 1. (10) 

The properties of the Jacobian elliptic functions are 
discussed in Ref. 27. Let us here only remind ourselves 
that they are doubly periodic meromorphic functions 
with a real quarter-period K(k) and imaginary quarter­
period iK'(k). In general, K and K' are given in terms 
of complete elliptic integrals. For us it will be con­
venient to put 

k = k' = 2-i , b = (a + c)/2, (11) 
then 

K = K' = K(2- i ) = [f(l)]2f4(7T)i. 

The range for the variables IX and fJ in (9) is 

IX E UK, iK + 2K), fJ E (iK, iK + 2K). (12) 

It is a simple matter to check that the metric in 
elliptic coordinates can be written as 

ds2 = t[cn2 (IX, k) + cn2 (fJ, k)J(dIX2 + dfJ2), (13) 

that the Laplace operator is 

t:.. - 2 (~+~) (14) 
- cn2 (IX, k) + cn2 (fJ, k) 01X2 ofJ2' 

and that the invariant measure over the hyperboloid 
is 

dVt dV2 2 2 
-- = -tCcn IX + cn fJ) dlX dfJ. (15) 

Vo 

As was shown in Ref. 3, the operator Ls of (6) for this 
coordinate system can be written as 

L K 2 b - C 2 2 lL2 • = I - -- La = KI - 2" a' 
a-c 

(16) 

The generators of the group as differential operators 
can be obtained by considering the quasiregular 
representation26 of the group g ~ Tg , where T J(v) = 
I(g-IV), parametrizing V according to (9), taking the 
group element get) from a I-parameter subgroup of 
0(2, 1), and expanding I(g-IV) into a Taylor series. 
Thus we obtain 

Kl = a I 2 2 dn IX cn fJ dn fJ -. ( a 
cn IX + cn fJ OIX 

+ sn IX cn IX sn fJ .!) , 
ofJ 

K2 = 2 I 2 sn (t cn fJ sn fJ -. ( a 
cn IX + cn fJ OIX 

+ 2 cn IX dn IX dn fJ :fJ)' (17) 

La= 2 2 2 (-cnlXsnfJdn fJ .§.. 
cn IX + cn fJ OIX 

+ sn IX dn IX cn fJ :fJ) 
(we are dropping the modulus k = k' of the elliptic 
functions). The operator (16) can be written in terms 
of elliptic coordinates as 

L = (-1 - cn2 fJ) -1 ( 0
2 

8 cn2 
IX + cn2 fJ 01X2 

0
2 

) + (-1 + cn
2 

IX) ofJ2' (18) 

Finally, we obtain two equations for the basis func­
tions of an irreducible representation of the 0(2, 1) 
group: 

tl!zh(lX, fJ) = -1(1 + l)!zh(oc, fJ), 
L.!zh(lX, fJ) = hJ;h(OC, fJ)· (19) 

Taking suitable combinations of these two equations, 
we find that we can separate the variables and obtain 
two essentially identical ordinary differential equations. 
Thus 

(20) 
satisfying 

d
2
A ll,(oc) + (h l(l + 1) 2)A ( ) - 0 - sn IX lh IX - , 
d(t2 2 (21) 

d
2
Azi.(fJ) + (Ii _ l(l + 1) sns fJ)Aih(fJ) = 0, 
dfJ2 2 

h + Ii = 1(1 + 1). (22) 
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In (21) we recognize the Lame equation in its 
Jacobian form. 

As mentioned above, we are only interested in the 
region oc E UK, iK + 2K), and so we have to study 
the Lame equation over a finite interval with a 
singularity at each end point. 

Making use of the Fuchsian theory28 of ordinary 
differential equations, i.e., expanding Au.(oc) into a 
generalized power series about each singularity and 
obtaining the indicial equation, we find that the 
singularities are indeed regular and that the exponents 
at the singularities are equal to -/ and / + I. 

We shall, in the body of this paper, restrict ourselves 
to unitary representations of the principal continuous 
series, so that / = -t + iq with q real. Since all 
solutions of the Lame equation behave as some 
combination of 

AI(OC) = (oc - OCO)-lc?l(OC - oco), 

A2( oc) = (oc - OCO)I+1c?2( oc - 0(0), (23) 

where 0(0 is any singular point and c?l.2( O() are regular 
there, we find that for 

-I < Re / < t, (24) 

in particular for Re / = -to both solutions are square 
integrable. Thus, both independent solutions of the 
Lame equation may appear in the expansions. To 
distinguish between them, let us introduce two 
reflection operators: 

XVI = -VI' Xvo = VO, XV2 = V2 , 

YV2 = -V2 , Yvo = VO, YVI = VI' (25) 

Thus, the operator X corresponds to the reflection 
P -->- 2K + 2iK - P and Y to oc -->- 2K + 2iK - 0(. 

The operators Ll, La' X, and Y now form a complete 
set, and the basis functions for the representation will 
satisfy Eqs. (19) supplemented by 

xfft(rJ., (3) = qff:(rJ., (3), 

Yfft(rJ., (3) = pfft(oc, (3), p, q = ± 1, (26) 

and can be written as 

fft(rJ., (3) = AfIt(oc)A~I;({3)· (27) 

Since there does not seem to exist an agreed stand­
ardization for the Lame functions, we fix them 
completely by imposing the boundary conditions 

At;.(iK + K) = 1, At~(iK + K) = 0, 

Au.(iK + K) = 0, A/~(iK + K) = -1. (28) 

Little is known about the Lame functions of a real 
argument, still less of a complex argument, and, in 
particular, no explicit expressions or integral repre-

sentations exist. It is amusing to note, however, that 
they can be considered to interpolate smoothly 
between exponentials (for k = 0) and associated 
Legendre functions (for k = 1). 

Let us further remark that the Lame functions do 
occur in physics-as the wavefunctions for an asym­
metrical top29 and also that they can be considered 
to be a special case of the Heun functions, which are 
the wavefunctions for a hydrogen molecular ion.30 

For further information we refer to Ref. 31. 

II. CROSSING SYMMETRIC MAPPING OF 
MANDELSTAM PLANE ONTO AN 0(2, 1) 

HYPERBOLOID 

Since our aim is to write crossing symmetric expan­
sions in terms of the functions (27), we must construct 
a symmetric mapping of the Mandelstam variables 
s. t, and u onto the points V, i.e., onto the elliptic 
coordinates oc and p. We shall do this in a similar 
fashion to how other (s, t, u) -->- V mappings were 
constructed in Ref. 4. 

We choose the scattering plane to be the plane 
(0, X, Z) so that the Y components of the 4-momenta 
of all four particles are equal to zero. Thus, although 
PI ... PI! have four components each, we can sti1l 
parametrize them in terms of the 0(2, I) hyperboloid, 
putting 

Pr = mr( -cn OCr cn Pr, i sn OCr dn Pr, 0, i dn OCr sn Pr), 
(29) 

where we again drop the symbol k = k' = 2-1 in the 
Jacobian elliptic functions. In this paper we shall also 
simplify our task by taking all masses equal: 

We start from the physical region of the s channel 
and wish to choose a frame of reference in which the 
interchange of sand t for fixed u will correspond to 
some simple exchange of oc and p. Having this in mind, 
we must first get rid of the ten redundant parameters 
in (29). It proves most convenient to describe the 
scattering in a specifically oriented brick-wall frame 
(or Breit frame) of reference, as illustrated on Fig. 1. 
Notice that the momentum of particle 4 is as if 
particle I had perpendicularly rebounded from a 
brick wall parallel to the vector P2 + Ps. The momenta 
(29) in this frame can be written as 

PI = (-cn OCI cn PI , i sn OCI dn PI , 0, i dn OCI sn PI), 

P2 = (-cn OC cn p, i sn oc dn P' 0, i dn IX sn P), (30) 

P3 = (-cn IX cn p, -i dn oc sn P' 0, -i sn IX dn P), 
P4 = (-cn OCl cn PI' -i sn oci dn p1, 0, -i dn OCI sn PI), 



                                                                                                                                    

286 N. W. MACFADYEN AND P. WINTERNITZ 

x 

z 

FIG. 1. The frame of 
reference. 

with the additional constraints from the conservation 
laws: 

2 sn OCI dn {JI + sn oc dn {J + dn oc sn {J = 0, 

2 dn OCI sn {JI + sn oc dn {J + dn oc sn {J = 0. (31) 

Solving (31), we have 

dn OCI = dn {JI 

= 2-l i{[l - Hsn oc dn {J + dn oc sn {J)2]1 - 1}1. 

(32) 

Thus, all four momenta are expressed in terms of oc 
and {J only, and the scattering amplitude in the 
chosen frame of reference is also a function of these 
two kinematic variables only. 

Using (30) and (32), we easily check that 

S = (PI + P2)2 = 2 + 2[ -y(l - tx2)1 - tx2], 

t = (PI - PS)2 = 2 + 2[y(1 - tx2)1 - tx2], (33) 

U = (PI - P4)2 = 2X2, 

where 
x = sn oc dn {J + dn oc sn {J, 

y = cn oc cn {J. (34) 

Conversely, we can express the elliptic coordinates in 
terms of the Mandelstam variables as 

4 (s + t)2 + 2st(2 - s - t) 
cn oc = -'---'------'----'-

4(s + t) 
+ ! (stU(S + t - st»)l, 

2 s + t 
4 {J (s + t)2 + 2st(2 - s - t) 

cn = 
4(s + t) 

_ !(stU(S + t - st»)l. (35) 
2 s + t 

In the physical region of the s channel, we have 
4 ::;; S < 00, - 00 < t ::;; 0, and - 00 < u ::;; 0, and 
this whole region will be described by (33) and (35) 

with 
oc E (iK, iK + 2K), {J E (iK, iK + 2K). (36) 

The t channel corresponds to 4 ::;; t < 00, - 00 < 
S ::;; 0, and - 00 < u ::;; ° and is described by the 
same formulas with 

oc E UK, iK + 2K), {J E (-iK, -iK + 2K). (37) 

The physical region of the u channel with 4 ::;; 
u < 00, - 00 < t ::;; 0, and - 00 < S ::;; ° can also be 
described in these terms by putting 

oc E (iK, iK + 2K), {J E (0, 2iK). (38) 

Note that the parametrization (29) with oc and {J in 
the regions (36) or (37) covers the whole upper or 
lower sheet of the hyperboloid v2 = 1, respectively. 
With oc and {J in the u channel region (38), however, 
a different parametrization of the hyperboloid is 
necessary, namely 

Vo = 2-1 sn oc (cn {J)/(dn (J), 

VI = 2-1 cn oc (sn {J)/(dn (J), (39) 

V2 = i dn oc/dn (J, 

and the physical region of the u channel gets mapped 
onto one-half of the upper sheet of the hyperboloid. 

Thus, each physical region gets mapped onto such 
a manifold that the scattering amplitude in the physical 
region can be expanded in terms of the basis functions 
of the irreducible representation of 0(2, 1). Our 
approach is so developed as to simplify crossing 
symmetry between the sand t channels. 

Let us now proceed to write expansions of functions 
defined over the hyperboloid in terms of the "elliptic" 
basis for 0(2, 1) representations, after which we shall 
return to the problem of crossing symmetry. 

III. SINGLE·VARIABLE EXPANSIONS IN 
TERMS OF LAME FUNCTIONS 

Classical Sturmian theory tells us of the existence 
of expansions in eigenfunctions of a differential 
operator L = -d2/dx2 + q(x), defined on some 
closed interval of the real line. More accurately, we 
have to find a self-adjoint extension T = T* of L, 
which involves constructing a Hilbert space of func­
tions over the interval; but this step is usually trivial 
in the simpler cases and is not considered in detaIl. 
In the singular Sturmian theory, however, when the 
interval is either infinite or has a singular point of L 
at one end or both, these considerations become 
much more involved. 

The general theory of such expansions is given in 
Refs. 32 and 33. It is found that, when neither of the 
eigenfunctions of L is square integrable, then L by 
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itself defines a unique self-adjoint extension but that, 
otherwise, one or more boundary conditions have to 
be imposed. In the former case the spectrum of Twill 
be continuous; in the latter, either discrete or mixed. 
A generally excellent account of the situation from 
the viewpoint or classical analysis will be found in 
Titchmarsh34 ; however, in this particular case, he 
does not apply the necessary boundary conditions to 
ensure that he does indeed expand in terms of a 
complete orthogonal set of eigenfunctions, so that 
his conclusions differ from those of Naimark32 and 
Dunford and Schwartz ,33 with whom we are in 
complete agreement. Since this34 is perhaps the best­
known work on the subject, we feel that a rather 
more detailed presentation of our argument is called 
for. 

We wish then to find an expansion of the scattering 
amplitude with one variable fixed in terms of the 
eigenfunctions of the formally self-adjoint formal 
differential operator 

d2 

L = - - + q(x) 
dX2 

d2 

= - -2 + 1(1 + 1)k2 sn2 (x, k) 
dx 

(40) 

over the interval 1= [iK' + K, iK' + 2K), the upper 
end of which is a singular point of L; the other half 
of the interval (iK', iK' + K) will be treated by 
symmetry considerations. Denote by V(/) and Ck(/) 
the spaces of Lebesque-square-integrable and of k­
times-differentiable functions over I, and define the 
space 

HL = {jE C2(l) If, L[EV(I)} 

and the operator Tl in V(/), 

D(T1) = HL , TJ'= Lf 

Because Tl is a closed operator, H L becomes a 
Hilbert space JeL upon the introduction of the inner 
product (and, of course, completion with respect 
thereto) 

(f, g)* = (f, g) + (Td, T1g), (41) 
where 

(f, g) = f!(X)g(X) dx; (42) 

however, T (that is, its unique extension) is not 
necessarily self-adjoint in this space. It can be shown 
indeed32.33 that it is so automatically only if neither 
of the eigenfunctions of L is square integrable in a 
neighborhood of either end of I; otherwise, we must 
restrict the domain of TI by imposing boundary con­
ditions. In the case at hand, we know from Lame's 

differential equation that for -l < Re / < t both 
solutions are V(/), and hence we need two boundary 
conditions. 

Let us introduce H o, which is the space of all func­
tions of H L which vanish in some open neighborhood 
of the two end points of I. Then by a boundary value 
for L we mean a continuous linear functional A on 
HL that vanishes on Ho; this can always be written as 

A(f) = (L[, A) - (f, LA) (43) 

for some A E H L' It is convenient here to introduce 
the function A+, which is defined to be any Coo 
function equal to (iK' + 2K - X)l+l in a neighbor­
hood of iK' + 2K and vanishing in a neighborhood 
of iK' + K, and the function A_ = A+ (l--+ -/ - 1): 
Then these define the boundary values 

A+(f) = lim [e l+1f'(E - e) - (I + l)e1"(E - e)], 
<-+0 

A_(f) = lim [e-1"'(E - e) + le-l-lf(E - e)], (44) 
<-+0 

where we have set iK' + 2K = E. Because of the 
relations 

A+(A+) = 0 = A_(A_), 

A_(A+) = 21 + I = -A+(A_), (45) 

these are independent, and so we can write any 
boundary condition at E as 

(sin 6A+ + cos 6 A_)(f) = 0 (46) 

for some fixed 6 independent of h. The other end of 
the interval iK' + K is associated with no singularities, 
and so here we can set 

[sin 0' + f' cos 0' = o. (47) 

A convenient choice of 0' is 0 or t17: This corresponds 
to choosing a solution of Lame's equation which is 
even or odd about iK' + K; we have already intro­
duced such solutions and denoted them Aih(X) or 
A!i.(x). It is clear that we could specify these as well 
by imposing boundary conditions at iK' instead of 
iK'+K. 

Now define the space Je = {jE JeL /fsatisfies (46), 
(47).} Then the restriction T = Tl I Je of Tl to Je is 
the self-adjoint extension of L that we have been 
seeking, and the eigenfunctions of L which satisfy (46) 
and (47) form a basis of Je. Equation (46) is then just 
a transcendental equation for h that defines discrete 
characteristic values35 of this parameter. 

A reasonably fair summary of the procedure is 
therefore: 

(i) Choose any value of h, say ho; 
(ii) select all values h such that (At,., Atho) = 0; 

(iii) these form a complete set. 
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The actual value of ho in (i) will be determined by th~ . 
boundary condition (46)-or vice versa. An identical 
procedure can be carried through for that part 'Of 
fE XL that satisfies (46) but is odd about iK' + K; 
but, of course, we do not expect the set of values of h 
to be that found earlier. We can then at last write 

(48) 

(49) 

where 
('K'HK dx 

(Nfh)-l = JiK' [Afh(X)]2 -J2 ; (50) 

the label p stands for the parity (±) and the .set {h} 
depends upon both p and I. The factors of -J2 are 
inserted for convenience. The expansion is convergent33 

in the topology of C2(/) defined by the norm 

_ OOTk lui Jk)1 
Ilfll -k~O 1 + lui In)I' 

where {Jk } is an increasing sequence of closed intervals 
of I whose union is I andf I Jis the restriction offtoJ. 

Let us consider these formulas. The most striking 
thing about· them is that despite I being an 
open interval with singular points at either end­
corresponding to an infinite path on the hyperboloid­
nonetheless, the spectrum is discrete. This contrasts 
sharply with the situation found when the operator 
L is defined by some subgroup of a symmetry group 
of the problem, and at first sight is somewhat sur­
prising; nonetheless, it follows immediately from the 
general theory (cf. Ref. 33, Sec. XIII, lO-e-I) once 
we notice that both solutions of Lame's equation are 
V(I), and we have gone into such detail merely. to 
show whence the result comes: The two key steps are 
(a) imposing boundary conditions (to make L sym­
metric) and (b) introducing the Hilbert space X (to 
make it self-adjoint). An intuitive but convincing 
argument is that when all the eigenfunctions are 
square integrable, then there is no mechanism for a 
divergence to occur to produce a d function-and 
hence indeed the expansion must be discrete. 

IV_ TWO-VARIABLE EXPANSIONS 

We now return to the main problem, which is to 
expand a function of two variables in terms of a 
product of Lame functions. Since this is defined over 
a hyperboloid, the most convenient way to do this is 
to make use of the Gel'fand-Graev pair of integral 
transforms, which we now briefly explain. 

The, Radon transform in n-dimensional Euclidean 
space is an integral over all possible hyperplanes; 
the Gel'fand-Graev transform is a generalization of 
this integral transform to any homogeneous manifold, 
and the role of the planes is taken by the horospheres 
of the space. For the hy,perboloid v2 = I these are 
merely the cross sections of the hyperboloid satisfying 
v . k = 1, where k is any point on the associated 
light cone k 2 = O-that is, they. are the surfaces of 
zero curvature in the Lobachevskii geometry. The in­
tegral transform maps any function defined on the 
hyperboloid into one defined on the cone, and, on the 
cone, it is meaningful to expand in terms of homo­
geneous functions (i.e., carry out a Mellin transform 
parallel to a generator), thus effecting a decomposition 
into functions transforming under a VIR of the 
associated group of motions. Since this is unaffected 
by the transform,' by first moving to the cone, de­
composing, and then, transforming back to the 
hyperboloid we have a convenient method for Fourier 
analyzing over the group any function defined on its 
homogeneous space. 

For the case in hand, these transforms can be written 

1 5-!+iOO J' f(v) = -2' dll cot TTl <I>(k, l)(v· k)-l-l dk, 
8TT I -!-iro r 

(51) 

J 
d2v 

<I>(k, 1) = f(v)(v' k)! - ; 
Vo 

(52) 

the integration contour r is an arbitrary path on the 
cone which intersects every generator once; dk is the 
invariant measure on this path, defined by d(tk) = 
dt dk, where d(tk) = dk1 dk2/klJ is that on the cuneo 
For further details, we cite Refs. 1,26, 36, and 37. 

Now such a path r is given by the quadruplet 

r a = (i cn 0, i dn 0, ±2-! sn 0), 

P± = (i cn 0, ±2-! sn 0, i dn 0), (53) 

o E UK', iK' + 2K) 

(the modulus of the elliptic functions is, of course, 
k = 2-!); a stereo graphic projection of this is given 
in Fig. 2. On each of the subpaths we expand the 
function <I>(ki±, /) by the Lame transform (48); then 

FIG. 2. The integration con­
tour r on the cone in stereo­
graphic projection. 
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for r a the contour integral in (51) becomes 

i <l>(k, l)(v, k)-1-1 dk 
r1+ 

= I Nf"Af+(l, h)fAf,,(O) 
p,lI I 

( 
. )-1-1 dO 

x -icl1.cpcO + SI1. d{J dO - J2 dl1.spsO ../2' 
(54) 

where the subscripts on A indicate that it is the 
relevant function for this subpath. 

Consider the integral over 0 in (54). It is clear that 
it converges uniformly for all 11. and p not in a neigh­
borhood of the singular points iK' and iK' + 2K; 
so we can apply a differential operator and take it 
under the integral sign. After some tedious algebra 
we find that the kernel J = { }-1-1 of the integral 
satisfies the differential equations 

LpJ = LeJ = - [L" - /(/ + 1)]J, 

where LiIJ is the operator (40), so that we can replace 
LpJ by LeI, carry out two partial integrations, and 
conclude that (54) satisfies Lame's equation in p 
provided that the integral converges and 

(AJ' - A'J)(O)I:~+2K = O. 

The convergence is assured, but the bilinear con­
comitant just oscillates if Re / = -to We therefore 
"regularize" the integral (51) by giving the exponent 
- / - 1 a small negative increment. 

A similar result holds in 11., except that now the 
eigenvalue h is replaced by Ii = 1(/ + 1) - h; so that 
we can write the integral as 

J Afi(1)J(I1., p, 0) dO = J/,:~(l, h)A~~({J)A~;;(I1.), (55) 

where the A'S are certain coefficients. Inspection of the 
parity under p -- 2K + 2iK' - P tells us that A 
vanishes unless p = p', and by using the standardiza­
tion (28) of our Lame functions we can write explicitly 

A++ = J2 J Ai,.(O)(i cn 0)-/-1 d£1, 

A+_ = (1 : 1) f Ai,.{(1)(i cn (1)-H sn (j d£1, 

A_+ = (l;; 1) f Ajj,(O)( i cn 0)-1-2( i dn 0) dO, 
(56) 

A __ = (l + 1~(l + 2) f Ajj,(£1)(i en O)-1-3(i dn 0 sn 0) dO, 

where the integrations are, of course, over iK' < £1 < 
iK' + 2K. 

We carry out this program for each of the four 
subpaths· ri± ; but, before writing down the expansion 
formula obtained, let us examine the projection 
formulas. These we find, by substituting (52) into (49), 

Af±(l, h) = J ~:v f(v) J AMO)[v' ki±(OW 5~' (57) 

and the integral over £1 once again gives a product of 
Lame functions, being just the complex conjugate of 
the corresponding integral in (54). Let us define the 
coefficients 

then we find, after some straightforward manipula­
tions, 

Arll(l, h) = Apll(l, h)*Jf(l1., {J)M,,(P)A~IS..I1.) d
2

v , 
Vo 

After some trivial redefinitions we can add together 
the contributions to (51) of all four subpaths, and 
make use of (55), to obtain at last the pair of trans­
forms 

APIl(l, h) = -t J dl1. dp(cn2
11. + cn2 {J) 

X Af1l(I1.)A~;;(P)f(l1., {J), (60) 

f(l1., P) = ~. Jdl(21 + 1) cot 7Tl 
87T I 

X I I Nl',. P'pq(l, hW 
11 P,Il 

x [Ar,,(I1.)A~;;(P)APIl(I, h) 

+ A~;;(I1.)Af1l({J)AqP(l, Ii)], (61) 

for oc E (iK, iK + 2K) and p E (iK, iK + 2K). 
Quite similarly, we can derive expansions for the 

region oc E (iK, iK + 2K), P E (-iK, -iK + 2K). They 
coincide with (60) and (61), except that M;;(fJ) and 
M1I(P) are replaced by At;;(P) and AMP). The new 
functions are again solutions of the Lame equation, 
this time standardized at P = - iK + K to be 

A~(-iK + K) = 1, Ai;(-iK + K) = 0, 

A7,.(-iK + K) = 0, A-;"'(-iK + K) = -1. (62) 

Let us note that, for/(I1., (3) satisfying 

-t Jlf(oc, {JW (cn2 
11. + cn2 (3) dl1. d{3 < co, 
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only the unitary representations of the principal 
continuous series figure in (61), i.e., 1= -t + iq, 
q real. The discrete unitary representations are absent, 
because they are not realized on the homogeneous 
space v~ - v~ - v~ = I. If we were to expand func­
tions defined over the whole group manifold, which 
would be necessary for particles with spin, some rep­
resentations of the discrete series would be present. 

V. REMARKS ON CROSSING SYMMETRY 

We shall now apply the expansion formulas (60) 
and (61) to expand physical scattering amplitudes. 
Before doing this, let us make use of some symmetries 
of the mapping (33) and (35) from s, t, and u to oc 
and p. 

First, this mapping is left invariant by reflecting oc 
and P simultaneously in the center point of their 
region of definition: 

~ -'" 2K + 2iK - oc, P -'" 2K + 2iK - p, 
S channel, 

oc -'" 2K + 2iK - oc, P -'" 2K - 2iK - p, 
t channel. 

Thus, these points correspond to the same values of 
s, t, and u, and we can put 

f(oc, P) = f(2iK + 2K - oc, 2iK + 2K - P) (63) 

or, respectively, 

f(oc, P) = f( +2iK + 2K - oc, -2iK + 2K - P)· 
(63') 

Using (60) and (61), we can easily see that such a 
symmetry of the scattering amplitude implies that the 
"Lorentz amplitude" Apq(l, h) satisfies 

Apq(l, h) = bpqAP(I, h). (64) 

Second, this mapping is also left invariant by the 
interchange 

oc -'" p, P -+ OC, 

so that 
f(oc, P) = f(P, oc), 

implying that we can put 

AP(/, h) = AP(l, Ii). 

(65) 

(66) 

A complete consideration of the crossing trans­
formation involves an analytic continuation of the 
scattering amplitude from one channel into the other, 
i.e., from (oc, P) in region (36) to, say, (37). It is a 
difficult task to discuss the convergence problems 
involved in the analytic continuation of expansion 
(61), and in this paper we avoid the problem altogether. 

Thus, let us consider two (0 priori) different 
scattering amplitudesf'(s, t, u) andj!(s, t, u), defined 

in the s- and t·channel physical regions, respectively. 
Independently of whether or not they are two different 
pieces of one and the same analytic function, we can 
consider a crossing symmetric reaction in which 

1 + 2 -+ 3 + 4, I + 3 -+ i + 4 

are identical processes, Le., particle 3 is the anti­
particle of 2. For such a reaction we must have 

f8(S, t, u) = ±ft(t, s, u) (67) 

(each amplitude is evaluated at a definite point in its 
own physical region). 

Now expand each of the amplitudes: 

1'(s, t, u) = 1'(oc, P) 
1 i-1+ioo 

= -2' dl(21 + 1) cot 1fl 
81f I -i-ioo 

X .2.2 Nih IApp(l, h)1 2 AP(I, h) 
" p 

x [AMoc)N;,lP) + A~h(OC)N;h(P)], (68) 

oc E (iK, iK + 2K), P E (iK, iK + 2K), 

ji(S, t, u) =P(oc, p) 
1 f-1+

ioo 

= -2' dI(2l + 1) cot 1fl 
81f I -t-ioo 

x .2.2 Ni" IApp(l, hW BP(l, h) 
" p 

x [Afh(OC)A:I>/i(P) + A~i<oc)Afh(P)J, (69) 

oc E (iK, iK + 2K), P E (-iK, -iK + 2K). 

For a crossing symmetric reaction the two ampli­
tudes must satisfy (67). As can be seen by examining 
the kinematic formulas (33)-(35), crossing symmetry 
can be ensured by putting 

f8(rx, P) = ±j!(P, 2K - oc) (70) 

or, alternatively, 

r(oc, P) = ±j'(oc, 2K - P). (71) 

However, we have 

AfiP) = pAfh(P), P = 2K - p. (72) 

Combining (68)-(72), we find that crossing symmetry 
is implied by 

(73) 

The "elliptic Lorentz amplitudes" in the two 
channels are given by almost identical formulas 

CiK+2K CiK+2K 

A:I>(l, h) = -1 JiK doc JiK dp(cn
2 

oc + cn
2 

[J) 

X A'{',.«(X)A~'ii(P)f'«(X, [J), (74) 
CiK+2K CiK+2K 

B:I>(l, h) = -lP JiK doc JiK dp(cn
2 

oc + cn
2 P) 

X Af,,(oc)N'ir.(P)P(oc, 2K - P). (75) 
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Let us consider these further. By using (72) and (73), 
Eqs. (68) and (69) become identical, modulo possible 
minus signs: In particular, the arguments of the Lame 
functions all lie in the same range (iK, iK + 2K), 
where they are given in terms of sand t by (35) with a 
unique prescription for extracting the fourth root. 
Therefore, unlike conventional single- or double­
variable expansions, our single formula (68) converges 
simultaneously in both the s- and t-channel physical 
regions with a single mapping of s, t --+ IX, {J. The ex­
pansions are not merely crossing symmetric-they are 
explicitly so, in the sense that sand t appear sym­
metrically throughout. This is the property we have 
been seeking. 

Analyticity of the scattering amplitude would now 
imply that f"( IX, (J) and ftc IX, (J) are the same function 
f(lX, (J) and that its values in the two channels are 
connected by some sort of dispersion relation. 

VI. DISCUSSION 

By choosing a Breit frame of reference for the 
scattering process, we have succeeded in developing a 
mapping s, t -+ IX, {J of such symmetry that the 
expansion formulas are explicitly symmetric in the 
Mandelstam variables sand t. The essential reason 
for this was that both the s- and t-channel physical 
regions were mapped onto hyperboloids in such a 
way that the order of the pair {s, t} was irrelevant: 
Hence, the two manifolds were identifiable and gave 
identical expansion theorems, upon which crossing 
symmetry could be imposed term by term. 

Notice, however, that the Lame functions of (J in 
(68) and (69), corresponding to the sand t channels, 
respectively, are not the same Lame functions; but, 
because their arguments lie in the appropriate ranges, 
we could equate their numerical values by (72). This 
was the final step in our argument; it corresponds 
basically to inserting by hand a factor of (-1) in the 
parametrization of ft~ and ft~ (the energies of the 
antiparticles in the t channel) and keeping the ranges 
of IX and {J unaltered. For the imposition of crossing 
symmetry this is extremely convenient-but it has 
to be reconciled with analyticity, which must start 
with (68) alone and by analytic continuation in {J 
reach (69). 

Let us note that, unlike other 2-variable expansions 
(see, e.g., Refs. 38-40) also written with the purpose 
of incorporating crossing symmetry (and using a 
completely different approach), our expansions are 
written directly in the physical regions. 

From a mathematical viewpoint, the interest of this 
paper lies in the beginnings ofa treatment of SO(2, 1) 
in a basis which does not correspond to any subgroup 

at all. As far as we are aware, no group has been so 
treated before. We have obtained the "spherical 
functions" of the group in the elliptic basis and have 
written down the expansion formulas. These latter 
contain several new features: Notice. in particular, 
the discrete spectrum of h, when we might have 
expected a continuous one, and the "essentially 2-
variable" nature of the expansions, which cannot be 
derived by an expansion in one variable followed by 
an expansion of the coefficient in terms of the other. 

Let us briefly mention future developments. First 
of all, we hope to return to a more thorough investi­
gation of the crossing symmetric expansions (60) and 
(61), mainly to investigate the analyticity properties, 
threshold behavior, asymptotic behavior, possible 
kinematic constraints (especially after incorporatiqg 
reactions with nonequal mass particles), etc. We also 
wish to apply these expansions to analyze experi­
mental data, which can only be done if methods of 
truncating and approximating the sums and integrals 
are devised. To achieve this, a further study of the 
properties of Lame functions is required. 

Secondly, since the scattering amplitude is actually 
a function of 4-dimensional momenta, our use of the 
0(2, I) group is somewhat artificial and expansions 
based on an 0(3, 1) group would be of even more 
interest (and also more in the spirit of previous 
workl-7). The threshold and asymptotic behavior 
based on the 0(3, I) group would be different and 
could be hoped to correspond more simply to physical 
expectations. 

Finally, a further development of group representa­
tion theory in elliptic bases would be of interest, in 
particular, a calculation of the matrix elements of 
infinitesimal and finite transformations of the group. 
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APPENDIX: ANOTHER ELLIPTIC 
PARAMETRIZATION 

Let us set 
Vo = (11k') dn IX dn p, 
Vl = -ik sn IX sn p, 
V2 = (k/k') cn IX cn p. 

(AI) 

This covers the entire upper sheet of v~ - v~ - v~ = 1 
when the variables take the range 

IX E [0, 4K], (J E [0, iK'); CA2) 
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notice that the curves of constant p are closed. The 
generators of the group are (using a shortened 
notation for the elliptic functions) 

J3 = .i. (S2P - SBexrl (dexCPSP.! - CexSex dP .!), 
k' oex op 

Kl = ik' (S2P - S2ex)-1 (cexsp d{J .! - Sex dexC{J ..!), 
k oex op 

K2 = 1 (S2{J - S2ex)-1 (sexcP dP.! - Cex dexSp ..!), 
k oex op 

(A3) 

and the Laplace operator in the homogeneous space 
separates to give two identical Lame equations (21). 

We look now for an expansion over the .. cycles 
P = con st. The boundary condition imposed earlier 
is now replaced by the periodicity condition 1(0) = 
1(0 + 4K), which implies that h is restricted to a set 
of discrete characteristic values, and so we can write 

f(O) = 2 N!'(l)Ep;"(O)l;'(l), 

1;'(1) = fi(o)EP~(O) ~~ . (A4) 

Here we have used the traditional notation31 for the 
periodic transcendental Lame functions of a real 
argument, except that the letter p now stands for the 
index set {c, s} corresponding exactly to our {+, -}, 
the parity about the origin. The label m runs over all 
nonnegative integers: It signifies the number of zeros 
of the Lame function in (0, 2K) and determines h(l) 
uniquely through the periodicity condition. 

The Gel'fand-Graev transform is much simplified 
because a single contour (dn 0, 2-1 sn 0, cn 0) encircles 
the cone; we take k = k' and proceed as before to 
obtain 

AJ/(l, m) = f dex d{J(sn2 ex - snll P) 

x Ep;"(ex)Ep~(P)f(ex, (J), (AS) 

f(ex, (J) = ~ fdll cot 771 I N!.(l) /A.;'(lW 
877 I mJ/ 

x Ep;"(ex)Ep;'"({J)AP(I, m), (A6) 

where the constants A. are defined much as before: 

A.~(l) =..L f4K Ec;"(O)(V'2 dn 0 - en Orl-l dO, 
J2 Jo 

Am(l) = -i(l + 1) f4KEsm(o) 
• 2../2 Jo I 

x (J2 dn 0 - cn 0)-1-2 sn 0 dO, (A 7) 

if we standardize the Lame functions at the origin. 

The greater simplicity of this coordinate system is, 
however, destroyed by the mapping s, t -+ ex, p. 
Defining 

we find 

2A = 2-1;SexSP - CexCP, 

B = dex d{J, 

s = 2(1 + B)(l + 2AB), 

t = 2(1 - B)(1 + 2AB), (AS) 

u = -SAll, 

which are simple; but the inverse mapping is not so. 
We find that dn (ex, 2-1) is a root of 

2.xB - 3x6(1 + 2B2) + x'[4B' + 902 + 1 

+ i(2A2 - 0 2 + i)2] - 3x202(1 + 202) + 20' = 0, 

(A9) 

and we cannot solve this explicitly. We have been 
unable to find an alternative mapping which is 
satisfactory in aU respects. 
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A class of test functions "minimal with respect to causality" is introduced. The corresponding fields 
are called local. Tempered and strictly localizable fields are local, but there is a large class of fields that 
are local but not strictly localizable. For local fields, the analytic properties of vacuum expectation 
values are studied. The local fields that are not strictly localizable are characterized by an arbitrary fast 
increase of Wightman functions near the light cone. With an adequate definition of local commutativity, 
other properties of tempered and strictly localizable fields seem to remain valid. 

1. INTRODUCTION 

In the usual Wightman framework, great attention 
has been paid to the investigations of the theoretical 
and experimental consequences of the following 
basic requirements of relativistic quantum field 
theoriesl - 3 : 

(a) Hilbert space of states, 
(b) covariance of the fields under the inhomogene-

ous Lorentz group, 
(c) positive energy, 
(d) local commutativity of fields, 
(e) particle interpretation. 
On the basis of the two first requirements it follows 

that a field A (x) will be an operator-valued generalized 
function. 3

•
4 In order to obtain an operator, A must 

be averaged with a smooth test function/(x): 

A(f) = f A(x)f(x) dx. (1) 

At this point we have to answer the following question: 
How to take the test functions? It was pointed outl - 3 

that some basic properties of relativistic fields can be 
obtained if we choose tempered test functions. The 

requirement of temperedness appears natural from 
a physical viewpoint because it reflects the symmetry 
between coordinate and momentum spaces. At the 
same time, with this requirement, one can prove that 
the scattering amplitude F(s, t) is analytic in s (for 
fixed t < 0) in a cut plane and has a polynomial 
behavior. 

In a series of remarkable papers, Jaffe3 has shown 
that the requirements (a)-(e) can be incorporated in a 
theory of strictly localizable fields with test functions 
which allow, in momentum space, a nontempered 
increase of fields. The wider class of fields studied 
by Jaffe is physically relevant since it allows for the 
possibility that the off-mass-shell amplitudes can 
grow, at large energies, faster than any polynomial. 
Besides temperate fields, strictly localizable fields 
include a class of nonrenormalizable interactions. 6 

Entire functions of free fields are other examples. 
We say that a field A(x) is strictly localizable in a 

certain region of space-time if A can be averaged with 
some test function I(x) which vanishes outside this 
region. Such a notion is very convenient for the follow­
ing statement of local commutativity: A field A obeys 
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be averaged with a smooth test function/(x): 

A(f) = f A(x)f(x) dx. (1) 

At this point we have to answer the following question: 
How to take the test functions? It was pointed outl - 3 

that some basic properties of relativistic fields can be 
obtained if we choose tempered test functions. The 

requirement of temperedness appears natural from 
a physical viewpoint because it reflects the symmetry 
between coordinate and momentum spaces. At the 
same time, with this requirement, one can prove that 
the scattering amplitude F(s, t) is analytic in s (for 
fixed t < 0) in a cut plane and has a polynomial 
behavior. 

In a series of remarkable papers, Jaffe3 has shown 
that the requirements (a)-(e) can be incorporated in a 
theory of strictly localizable fields with test functions 
which allow, in momentum space, a nontempered 
increase of fields. The wider class of fields studied 
by Jaffe is physically relevant since it allows for the 
possibility that the off-mass-shell amplitudes can 
grow, at large energies, faster than any polynomial. 
Besides temperate fields, strictly localizable fields 
include a class of nonrenormalizable interactions. 6 

Entire functions of free fields are other examples. 
We say that a field A(x) is strictly localizable in a 

certain region of space-time if A can be averaged with 
some test function I(x) which vanishes outside this 
region. Such a notion is very convenient for the follow­
ing statement of local commutativity: A field A obeys 
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the requirement of local commutativity if A(f) 
commutes, or anticommutes, with A(g) whenever the 
test functions f(x) and g(x) vanish outside spacelike 
separated region$. 

From the mathematical point of view, the property 
of a field to be strictly localizable is closely connected 
with the existence of sufficiently many test functions 
with compact support in configuration space. On the 
other hand, the existence of test functions with com­
pact support in configuration space requires test 
functions in momentum space which have a decrease 
at infinity like exp (-lip"")' fl < I, where Ilpll is the 
Euclidean norm.6•3 

The main results of Jaffe are the following: 

(i) The momentum space test functions suitable 
for a strictly local field theory belong to a class 
m(1R4) c !D(1R4). 

(ii) The convergence in m(1R4) is defined by the 
following family of norms: 

Ilflln.m.N = su~ g(N IlpI12)(1 + Ilpllt I Dmf(p)J· (2) 
pEIR 

Here nand N are integers and get) is an entire func­
tion which characterizes the momentum space 
growth of the off-mass-shell amplitudes. The condition 
ft < I, where ft is the order of growth of get), is a 
sufficient condition for strict localizability. [A nec­
essary and sufficient condition for strict local­
izability is 

100 
(1 + t2)-110g g(t2

) dt < + oo.J 
(iii) The vacuum expectation values are generalized 

functions over the Fourier transform of 9J1(1R 4n), and 
are boundary values of analytic functions in the 
forward tube with essential singularities near the real 
points. The general principles of relativistic field 
theory can be worked out in this frame. The only 
difference with tempered fields is a faster than poly­
nomial bound of the off-mass-shell amplitude at high 
energy. However, the on-mass-shell scattering ampli­
tudes have the property of polynomial boundedness. 
This last result was recently obtained in all theories 
with local observables. 7 In spite of the important 
results obtained for a strictly local field theory, the 
choice of the test functions remains without direct 
physical justification. It is merely motivated by the 
technical point of view to have at hand a familiar 
formulation of local commutativity. 

In this work we consider a category of fields larger 
than the strictly localizable ones. For the order of 
growth of the Jaffe indicatrix, we admit the values 

ft ~ 1. The choice of the test functions suitable for 
these fields can be physically motivated from the 
causality condition. We call these fields locaLS We 
show that for local fields the vacuum expectation 
values are generalized functions which are boundary 
values of polynomially bounded analytic functions in 
the forward tube. For local fields that are not strictly 
localizable, it is proved that the Wightman functions 
can grow arbitrarily fast near the light cone. These 
analytic properties hold independently of the defini­
tion of local commutativity we adopt. It appears that, 
with a suitable definition of local commutativity,5.s 
other results obtained for tempered and strictly 
localizable fields are also valid. At the same time, 
for local fields, there exists a limit theorem. 9 

2. CAUSALITY AND TEST FUNCTIONS 

Recently the idea that causality may serve as a 
physical motivation in choosing the test functions has 
found special attention.8 In a consistent quantum 
field theory these test functions have to incorporate 
the basic requirements (a)-(e). Some arguments for 
utilizing causality in choosing the test functions come 
from the theory of nonrenormalizable interactions5 

and from Bogoliubov's causality principle for con­
structing the scattering matrix in the quantum theory 
of interacting fields. s Here we present a simple argu­
ment compatible with the requirements (a)-(e). Let 
us write the Kallen-Lehmann representation for the 
Fourier transform of the vacuum expectation value 
of the commutator 

f(p) = JeiPX('Fo, [A(tx),A(-ix)]'Fo)dx 

= 100 
dm2p(m2)~(p2 - m2)E(po), (3) 

Replacing ~(p2 - m2)E(po) by 

[(Po + ie)2 - p2 - m2]-1, 

we obtain the expectation value for the retarded 
commutator, 

fRet(p) = lim (oodm2p(m2)[(po + iE)2 _ p2 _ m 2J-l. 
.-+0 Jo 

(4) 

But, for nontempered fields, (4) diverges because 
S:' p(m2) dm2 does so. An acceptable definition of (4) 
can only be obtained by inserting a convergence factor 
g(m2) in (4)3: 

R t . i 00 2 g(p2) ( 2 f e (p) = lim dm --2 pm) 
.-+0 0 g(m) 

X [(Po + ie)2 - p2 - m2rl. (5) 
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This definition is acceptable only if inside the forward 
light cone (in configuration space) the Fourier trans­
form of jRet(p), Eq. (5), agrees with the Fourier 
transform of j(p). Thus, since :F(j(p» = :F(jRet(p» 
inside the forward cone, it follows that in passing 
from (3) to (5) the introduction of g can modify j only 
at the origin of the light cone x = O. Therefore, if 
gl(m2) and g2(m2), gl ':;6 g2, have the same growth, 
the difference 

f~et(p) _ f~ct(p) 

=lro dm2 p( m2) (g2( m2)gl(p2) - gl( m
2
)g2(p2») 

a gl(rn2)g2(rn2)(p2 - rn2) 

= W(p2) (6) 

must have a Fourier transform w( - O)b(x) localized 
at x = O. The function W(p2) has the same order as 
gl(p2) and g2(p2). On the other hand, the generalized 
function w( - O)b(x) can be localized at x = 0 if and 
only if W(p2) has a maximal growth of order one and 
type zero.IO.S Consequently, from causality [i.e., from 
the condition that the Fourier transforms of jRet(p) 
vanish outside the forward cone], it follows that 
we can choose only convergence factors [i.e., indica­
trices g(p2)] with a maximal growth of order one and 
type zero. We see that the test functions for strictly 
localizable fields obey the causality principle and that 
there exist also test function spaces which obey the 
causality principle but do not incorporate strictly 
localizable fields (the case of order one and type 
zero for the indicatrix). A theory is called locals if 
the indicatrix has maximal growth of order one and 
type zero. Although the change in the growth of the 
indicatrix from strictly local to local theories is minor, 
the class of local theories is much larger than the 
class of strictly local ones.u At the same time, when 
leaving strictly local theories, we see that new prob­
lems of principle are springing up: The test functions 
become analytic, and therefore no test function with 
compact support exists. We can no longer localize 
fields in a bounded region of space-time, and the 
local commutativity has to be formulated using the 
notion of support of an analytic functiona1. 5•8 Similar 
problems appear when we try to formulate non local 
theories.s Therefore, it is of interest to work out the 
case with order of growth one and type zero which 
appears like a limiting case between strictly local and 
nonlocal theories. 

Although Jaffe's spaces are quite general and un­
restrictive, we do not use them because, for an 
indicatrix with order of growth one and type zero, 
the test functions have no definite domain of analy­
ticity. Instead, we use some similar spaces of Gel'fand 

and Shilov6 which are called "spaces of type S." 
These spaces were used also to study entire functions 
of free fields. 12 

In the following section we give first a brief review 
of such spaces and then derive some new results which 
are then used in studying analytic properties of 
vacuum expectation values for our local fields. 

3. SPACES OF TYPE S 

Any infinitely differentiable function cp(p) (test 
function in momentum space) belongs to Sa., IX> 0, 
if and only if there exist constants Cq and a (depending 
on cp) such that 

Icp(q)(p) I ~ Cqexp (-a 1 IPll,,-l -'" - an lpnla.-
1
), 

(7) 

where n is the number of variables (p = Pl' .. Pn)' The 
spaces Sa. (test functions in configuration space) are 
defined as Fourier transforms of Sa.: Sa. = :F(S,,). 
We have to consider also the spaces S".a which are 
made up of all functions cp(p) having the property 

Icp(q)(p)1 ~ C~a exp [-(a1 - b1) IPll",-l 
-1 

- ... - (an - bn) IPnl'" ] (8) 

for any bi > 0, i = 1, 2, ... , n, and also the Fourier 
transformed spaces s",·a = :F(S«,a). We have 

S - u S SIX - U SIX.a «- a,a' - • 
a a 

It was shown in Ref. 6 that for IX < 1 the functions 
"P(x) E sa.·a or SIX can be extended (with x replaced by 
z = x + iy) into entire functions "PCz). For IX = 1 
the functions "P(x) E SIX.a, a ':;6 0, can be continued as 
analytic functions "P(z), into the same complex 
neighborhood of fR n. For a-+- 0, the dimension of 
this neighborhood tends to zero. The functions 
"P(x) E Sl still have an analytic continuation in c;n. 
For instance (in the case n = 1), for each "P(x) E Sl 

there exists a strip around the real axis in which 
"P(z) is analytic, but no strip exists in which all 
functions of Sl are analytic. 

The topology in S",.a can be defined with the help of 
the norms 

where 

Mr(p) = exp [(1 - r-1)(a l lpll lX
-

1 + ... + an IPnla.-1
)]. 

The spaces Sa..a are therefore countably normed 
spaces. The topology in Sa..a can be defined through a 
convergence notion in the following way: A set of 
elements CPo E Sa..a converges to zero if and only if the 
derivatives CP~q) (p) converge uniformly to zero for each 
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q and the norms II<P.llr are bounded for each r. It is 
easy to see that ~ C Sa.a C S, where ~ and S are 
Schwartz' test function spaces. Using the standard 
methods of distribution theory, we can show that ~ 
is dense in S«,a' Because ~ is also dense in S, Sa a will 
be dense in S. . 

The topology of Sa = Un Sa.a is the topology of 
inductive limits. A sequence {<Pv} of Sa converges to 
zero if and only if all functions <Pv(x) are in the same 
space SI/..a in which {<Pv(x)} tends to zero. We have 
that ~ C SI/. C S and Sri. is dense in S. It follows that 
we can write 

Sf C S~.a C ~f, Sf C S~ C ~f, (9) 

i.e., S~.a' S~ are spaces of Schwartz distributions 
which contain the tempered ones. The spaces (s,,·a), 
and (S"), are the Fourier transforms of Sf and Sf a.a IX· 

Finally, the spaces SI1..tJ,' SI1.' s,,·a, and sa are'invariant 
under translations and are nuclear.6 

From (8) and (7) it follows that SM and S" are 
similar to Jaffe's spaces in momentum space. In order 
to have the same asymptotics, we take IX = 11ft, 
where ft is the order of growth of Jaffe's indicatrix. 
The theory of strictly localizable fields can be formu­
lated for ft < 1, i.e .• for IX > 1. We have seen that SI 
is the maximal space of test functions in momentum 
space admitted by the causality condition. We need 
the following: 

Lemma 1: Let T E' S{ C~f and <pep) E SI' The 

considered also by Sebastiao e Silva (ultradistribu­
tions)13 and by Sato (hyperfunctions).14 

4. VACUUM EXPECTATION VALUES AS 
BOUNDARY VALUES OF ANALYTIC 

FUNCTIONS 

In what follows we consider functions which depend 
on n 4-vectors. A variable such as p will stand for a 
collection on n 4-vectors p(j) with components p~j). 
The product pq stands for .I~1 (p(iJ. q(J). where 
(iJl , q(j) is the Lorentz inner product of the jth 4-
vectors. Furthermore, r will denote the product of n 
forward light cones r = ®~1 V+. The points in V+ 
are 4-vectors such that p~ - p2 ~ 0, Po > O. 

Let 'YJj ,j = 1,2, ... , M, be M points in the interior 
of r, and let 'YJ E r be a distinct point in the interior 
of the convex hull of rJ j. In other words, 

1II 1II 

'YJ=~).j'YJI' ).1>0, ~).1=1. (11) 
j=1 j=1 

By taking M sufficiently large, we can choose the rJj 
so that they span fR4n. Hence a full neighborhood 
of'YJ lies in the convex hull of 'YJj. Let us consider the 
auxiliar function 

a(p, 'YJ, 'YJi) = exp (-p'YJ)(f exp (-PrJT1). (12) 
1=1 

We have the followi ng3: 

Lemma 3: Under the above conditions there holds 

distribution T<p is tempered. where 
(13) 

Lemma 2: Let T E ~'(fR4). Suppose that, for every 
'YJ E V+ (the forward light cone), we have e-'P~T E S{ . 
Then it follows that T is in S{ . 

We give only the proof of Lemma 2. For Lemma I 
the proof is similar. Let tp(p) E S1' It follows that there 
exists an a> 0, a E V+, such that tp(p) E SI.a' We take 
1] = la and define 

(10) 

where <pep) = e'P"tp(p) E S1' From tpn(P) - tpCp) in SI, 
it follows that 

and therefore T1 will be a distribution in S{, Tl E 

S{ c !.O'. For tp(p) having compact support, we have 
from (lO) that (T1' tp) = (T, tp). Because ~ is dense 
in SI' we conclude T = Tl E S{ . 

We remark that spaces which are in closed connec­
tion with the spaces of type S for IX 2: I have been 

n 
Iipl12 = I [(pjo)2 + (p,)2], 

1=1 

d > 0 being a geometrical constant depending on rJ 
and 'YJj' and the Cm , Co = 1, are other constants 
which do not depend on 'YJ and 'YJi' 

In particular, from Lemma 3 it follows that the 
a(p, rJ, 'YJj) are elements of S1(fR4n). The following 
theorem plays a central role. 

Theorem 1: Suppose that T(p) E!.O~(IR4n) and 

exp (- p'Yj)T(p) E S{(fR4n). (14) 

Then the Laplace transform 

C(T)(~ - i'YJ) = .rg(exp (-P'YJ)T(p» (I 5) 

is a function of ~ - i'YJ holomorphic in the tube 
lJn = fR4n - ir. For each compact K c r, there 
exists a polynomial PK(;) such that for all 'YJ E K 

fC(T)(; - h})1 =:;; PK (;). (16) 
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Conversely, every function holomorphic in b n which 
satisfies (16) is the Laplace transform of a T(p) 
satisfying (14). 

Proof: Following an idea of Jaffe,3 we will show 
first that condition (14) is equivalent to the following 
one: 

exp(-prJ)T(p)ES'(fR4n). (17) 

Indeed, from (14) we have immediately the relation 
(17) because S' c S{ [see Eq. (9)]. It remains to 
prove that from (17) the relation (14) follows. From 
(12) we have 

exp(-prJ)T(p) = a(p'rJ''YJi)(~eXp(-P'YJi)T(P))' 
,=1 

(18) 

The sum in the rhs of (18) is in S{ . Taking into account 
Lemma 3, we see that a(p, rJ, rJj) E S1' In (18) we have, 
therefore, to multiply functions from Sl with general­
ized functions from S{ . From Lemma 1 it results that 
exp (-prJ)T(p) is in S' for all rJ E r. We can apply now 
standard results4 to see that the Laplace transform is 
holomorphic in b n and obeys the polynomial bound 
(16). 

We remark that this theorem is also valid for 
oc> 1. 

Theorem 2: Suppose that a function holomorphic 
in b n satisfies the polynomial bound (16). Then, for 
rJ ---+ 0, 'YJ E r, it converges in the sense of (Sl)' to a 
generalized function in (Sl)'. 

Proof: Indeed, from Theorem 1, the holomorphic 
function is the Laplace transform of a distribution 
in ~'(fR4n) which satisfies (14). Taking into account 
Lemma 2, we have generally from 

exp (-prJ)T(p) E S~(fR4n), 'Y] E r, 

that also T(p) E S~ (fR 41'). Consequently, the Laplace 
transform L(T)(~ - i'Y]) converges for 'Y] ---+ 0 to the 
Fourier transform :F~(T(p)), which is in (Sl)'. The 
convergence is in the sense of generalized functions in 
(Sl)'. 

It is interesting to remark that the bound 

IL(T)(~ - i'Y])1 ~ PK (;), r; E K, 

in the case (sa)" oc = 1, replaces the bound 

IL(T)(~ - itr;)1 ~ PK(~)W, 

r integer, 0 < t < 1, 'Yj E K, 

for tempered distributions. For test functions suitable 
for strictly local theories, essential singularities 

appear near the real points.3•9 We conclude that, for 
fields that are localizable but not strictly localizable, 
the Laplace transforms (and therefore the Wightman 
functions) can grow arbitrarily fast near the real 
points. The same results and concrete examples can 
be obtained using the Giittinger's series of derivatives 
of d functions. 10 

Let us take now a scalar field with momentum space 
test functions in SI' With the standard notations (1) 
and (2) and using the nuclear property and translation 
invariance of the spaces of type S, we have the 
following: 

Theorem 3: The vacuum expectation values in a 
local theory are boundary values of analytic functions 
in b n_ 1 : 

W($l' ... , $n-l) 

= lim W(~1 - i'Yjl' ... , ~n-1 - i'YJn-1)' (19) 
'u ..... O,···."n-l-+ O 

The convergence in (19) is the one in the sense of 
generalized functions in (Sl)'. Furthermore, W($1 -
irJ1, ... , $n-l - i'YJn-l) is polynomially bounded in 
b n- 1 , but can grow arbitrarily fast near the real 
points ('YJl" •• , 'YJn-l ---+ 0). The function W has an 
unique analytic continuation in the extended tube. 

The statement of this theorem follows from 
classical results1.2 and Theorems 1 and 2. 

We conclude that the only difference between 
tempered and strictly localizable fields, on the one 
side, and the local fields that are not strictly localizable, 
on the other side, lies in the fact that the latter can 
admit, arbitrarily fast increasing Wightman functions 
near the light cone contrary to the former. 

In what follows we will discuss other properties of 
local but nonstrictly localizable fields. Most of them 
can be proved as usually taking into account that 
for these fields the Wightman functions are still 
boundary values of analytic functions. The first con­
sequence is that the Jost points still exist and therefore 
the weak local commutativity can be formulated. On 
the other hand, a global edge of the wedge theorem 
is valid. The usual proof for boundary value in ~' 
can be followed if we notice three elementary facts: 
(i) (Sl)' * Sl C Ceo -the space of infinitely differenti­
able functions; (ii) the possibility of approximating 
the Dirac function o(x) with test functions in S1 

(for example, with Gaussian functions which are 
both in SI and 81); and (iii) the nuclearity of Sl.6 
It results that the PCT theorem remains valid.! The 
local but nonstrictly localizable fields are peT 
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invariant as a consequence of weak local commuta­
tivity. 

We remark that for our fields a limit theorem in 
the sense of Jaffe is valid. 9 The limit theorem enables 
us to consider entire functions of a free field with an 
infinite order of growth as local but nonstrictly 
localizable fields. 

Let us give now some details about the scattering 
theory. We have to look at a scattering theory for 
fields considered as operator-valued generalized 
functions over SI and which are satisfying the 
Wightman axioms except the axiom of locality. It was 
shown recently by Steinmannl5 that a usual scattering 
theory exist for fields which are operator-valued 
generalized functions on the test functions of Z, i.e., 
on test functions whose Fourier transforms have 
compact suppo'rt if the Wightman axioms (except 
local commutativity) and the axiom of asymptotic 
completeness are satisfied and if instead of local 
commutativity a certain regularity condition (condi­
tion R) in p space is considered. More precisely, one 
has to demand the existence of generalized retarded 
products as defined by Steinmann,16 i.e., operator­
valued invariant generalized functions Gp(XI, ... , xn) 
satisfying the usual algebraic relations and symmetry 
properties. The Fourier transforms of the matrix ele­
ments of Gp(Xl," . ,xn) are supposed to be analytic 
functions with pole-type singularities near the real 
points'in momentum space. There is no condition 
about the asymptotic behavior for large momenta real 
or imaginary. We have, for our case, ~ c SI and 
Z C SI, and ~ and Z are dense in SI and SI, respec­
tively. For duals (SI)' C Z' and therefore the usual 
scattering theory will be valid for our fields if the 
support properties on the generalized retarded 
products are replaced with condition R. 

5. CONCLUSIONS 

We have introduced the test functions of a field 
theory by utilizing physically motivated causality 
condition, i.e., the minimum class of test functions 
compatible with causality. The causality condition 
implies for Jaffe's indicatrix a maximal growth of 

order one and type zero. The corresponding fields 
are called local. Into the category of local fields there 
fall tempered and strictly localizable fields, but there 
is also a class of fields that are local but not strictly 
localizable. For local fields the common analytic 
properties of the vacuum expectation values are valid. 
The only difference between local and strictly theories 
is thatin the former, near the light cone, the Wightman 
functions can grow arbitrarily fast. The convergence 
of the Wightman functions to boundary values is 
to be defined in the sense of generalized functions in 
(SI)'. This convergence is weaker than the corre­
sponding convergence for tempered and strictly 
localizable fields. In the topology of (SI) a limit 
theorem holds. 9 It seems that if local commutativity 
is replaced with some "technical" conditions, other 
results of strictly localizable fields remain valid. 

ACKNOWLEDGMENTS 

The author is indebted to Professor A. Jaffe for 
sending him his unpublished manuscript, to Professor 
W. Giittinger for stimulating discussions, and to 
Professor F. Bopp for the warm hospitality of his 
Institute. He wishes to express his sincere gratitude 
to the A. v. Humboldt Foundation for a Fellowship. 

* Work supported by the A. v. Humboldt Foundation. 
t On leave of absence from the University of Cluj, Romania. 
1 R. F. Streater and A. S. Wightman, peT, Spin, Statistics and 

All That (Benjamin, New York, 1964). 
2 R. Jost, The General Theory of Quantized Fields (American 

Mathematical Society, Providence, R.I., 1965). 
3 A. M. Jaffe, Phys. Rev. Letters 17, 661 (1966); Phys. Rev. 158, 

1454 (1967); also "High Energy Behavior of Strictly Localizable 
Fields. Mathematical Tools," unpublished. 

, A. S. Wightman, Ann. Inst. Henri Poincare 1, 403 (1964). 
• W. GUttinger, Nuovo Cimento 10, 1 (1958); Fortschr. Physik 

14,483 (1966). 
• 1. M. Gel'fand and G. E. Shilov, Generalized Functions 

(Academic, New York, 1964), Vols. 1,2. 
7 H. Epstein, V. GI~ser, and A. Martin, CERN Preprint, TH 991, 

1969. 
8 G. V. Etimov, Kiev, Preprint ITF·68.52, 1968; N. V. Hieu, 

Ann. Phys. (N.Y.) 33, 428 (1965). 
• F. Constantinescu, University of Munich, Preprint, 1969. 

10 F. Constantinescu, N uovo Cimento Lett. 1, 892 (1969). 
11 s. S. Khoruzhy, Phys. Letters 26B, 17 (1967). 
12 A. Rieckers, University of Munich, Preprint, 1968. 
13 J. Sebastiao e Silva, Math. Ann. 174, 109 (1967). 
" A. Martineau, Sem. Bourbaki, 13" annee, No. 214 (1960/61). 
16 O. Steinmann, Preprint SIN (ZUrich), 1970. 
,. O. Steinmann, Commun. Math. Phys. 10,245 (1968). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 2 FEBRUARY 1971 

Motion in Electric and Magnetic Fields. I. 
Klein-Gordon Particles 

LUI LAM 

Department of Physics, Columbia University, New York, New York 10027 
and 

Bell Telephone Laboratories, Murray Hill, New Jersey 07974 

(Received 5 August 1970) 

Exact soluti~:ms of the Klein-Gordon equation are found for a new solvable configuration of external 
ele~tromagnetlc .fields, namel~, a static uniform electric field inclined at an arbitrary angle to a static 
umform magnetlc field of arbitrary strength. Applications are discussed at the end. 

I. INTRODUCTION solvable configuration of external fields, namely, a 
static uniform electric field inclined at an arbitrary 
angle to a static uniform magnetic field of arbitrary 
strength. This will also serve to clarify the rather 
involved mathematics and prepare the way for the 
more complicated case of spino! particles to be dis­
cussed in a separate paper14 in which the effect of the 
spin will be emphasized. 

As is well known, the configuration of an uniform 
electric field E inclined to an uniform magnetic field 
B can always be Lorentz-transformed to that of paral­
lel fields if they are not originally orthogonal to each 
other. In fact, if we take E and B to lie in the (y, z) 
plane, the appropriate Lorentz frame in which E' is 
parallel to B' moves with velocity15 (3 given by16 

(I + P2)(B x E) + (3(B2 + £2) = O. (1) 

The relativistic motion of a classical particle in 
external electric and magnetic fields is quite well 
understood.! However, the corresponding case for 
quantum particles is yet to be exploited to its full 
extent. The recent availability of intense· electron 
beams in the 100 keV to MeV range in the laboratory2 
and the proliferation in recent years of meson factories 
that are capable of generating controllable intense 
meson beams3.4 will make practical any test or appli­
cation derived from our solutions. On the other hand, 
outside the laboratories, the configuration of parallel 
electric and magnetic fields5 (and certainly others tOQ) 
has appeared in astrophysical problems where 
relativistic particles are likely to be present.6 All 
these add up to an urgent demand for the clear 
understanding of a relativistic quantum particle in 
external electromagnetic fields. This is readily ac- Equation (I) always has a solution with P < I, and 
complished if we have the exact solutions of the we note that (3 lies in the x direction and is thus 
equations of motion. Nevertheless, exact solutions in perpendicular to both E and B. Therefore, if we know 
nature are known for their scarcity as well as their the exact solutions for the two cases of E parallel to B 
elegance and utility. In the case of spino! particles, and E perpendicular to B, respectively, and if we 
since Dirac wrote down the relativistic wave equation know how to Lorentz-transform the wavefunctions, 
in 1928, we have witnessed surprisingly few solvable we will already have in hand the exact solutions for 
configurations in the literature. Those we know of are the general case of E inclined to B at an arbitrary 
the following: a Coulomb potentiaJ,7 a constant angle. The existence of two intrinsic cases is related 
magnetic field,s a constant electric field,9 the field of a to the fact that both E· Band £2 - B2 are Lorentz 
plane wave,lO the field of a plane wave with a constant invariants. There is only one drawback to this 
magnetic field in its direction of propagation ,11 and, approach, namely, in general, a stationary state need 
lastly, four cases in which the electromagnetic potential not be Lorentz transformed into a stationary state.17 

has a particular functional dependence on the space However, for E and B both in the z direction the 
coordinates.12 The potential usefulness of an exact stationary states turn out to have the form (see 
solution need not be elaborated here. One only has to Sec. III) 
remember the case of an electron in a constant lP(y, z) exp [i(p",x - Et»), (2) 
magnetic field, which ranges from the Landau levels which under a Lorentz transformation in the x 
in solids to Malkin and Man'ko's model of dy- direction, such as the one described in (1), remains 
namical symmetry.!3 a stationary state in the new frame. In the following, 

In this paper, we present in detail for the first time we therefore confine our attention to the parallel and 
the exact solutions for a spin-O particle in a new orthogonal configurations only. 
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For E orthogonal to Band E ~ B, the configura­
tion of fields can further be Lorentz reduced to that of 
a pure electric field or a pure magnetic field17 (de­
pending on the relative strength of the fields), and we 
may obtain the needed solutions by a proper Lorentz 
transformation on the known exact solutions.s.9 

Nevertheless, for a uniform treatment, they are 
derived below in conjunction with the Lorentz­
invariant case of E • B = 0, E = B. 

In the following, exact solutions for a Klein­
Gordon particle in parallel and orthogonal fields are 
presented. The nonrelativistic limit is discussed in 
Sec. II and compared to the classical results, while the 
relativistic motion is reserved for Sec. III. Finally, in 
Sec. IV, the various solutions obtained are analyzed 
and discussed. 

II. NONRELATIVISTIC MOTION 

Nonrelativistic motion of a spin-O particle is 
described by the Schrodinger equation, which in the 
presence of external electromagnetic potentials (A, Ao) 
is 

[(p - eA)2/2m]cp = (Po - eAo)cp, (3) 

where e is the charge of the particle. 

A. E liB 
For constant, uniform E and B both in the z direc­

tion, we may take 

Ao = -zE, Al = -yB, A2 = Aa = 0, (4) 

where E and B are constants and are assumed to be 
nonvanishing for definiteness. Equation (3) then 
becomes 

[Q(y) + D(z)]H(y)K(z) = 0, (5) 
where 

Q(y) == p~ + (eB)2(y + p.,/eB)2, (6) 

and gives the solution 

H = exp (-!oc2)H,,(oc), (13) 

b = -IeBI(2n + 1), n = 0,1,··· , (14) 

where the Hn are the Hermite polynomials. Introduc­
ing the new variable 

15 == -(2meE)*(z + ~ + _b_), (15) 
eE 2meE 

we see that Eq. (10) becomes 

and gives 

K = <1>(15), (16) 

where <I> is the Airy function. ls Collecting (8), (13), 
and (16), we have 

CPp •. £.n = exp [i(p",x - Et)] exp (-toc2)Hn(oc)<I>(<5) 

(17) 

with (X and 15 given by (11), (15), and (14). Therefore, 
motion in the (x, y) plane is in quantized orbits while 
the motion in the z direction is governed by <1>. The 
quantization of b has no analog in the classical case. 

B. E.l B 

Taking B in the z direction and E in the y direction, 
we may set 

Ao = -yE, Al = -yB, A2 = As = 0. (18) 

Equation (3) becomes 

(:;2 - p2 + k) M = 0, (19) 

where 

(20) 

D(z) == p~ - 2meE(z + E/eE), (7) k == (leBI}-l[ - p! - p~ + 2mE + (Bp", - mE)2/B2], 
and (21) 

cp = exp [i(p",x - et)]H(y)K(z), (8) and 

cP = exp [i(p",x + P.Z - Et)]M(y), (22) since both p", and the energy E are constants of motion. 
Equation (5) is separable and is equivalent to withp""p., and E constants of motion. Equation (19) 

(9) is the same type as (12) and thus 
[Q(y) + b]H(y) = 0, 

[D(z) - b]K(z) = 0, (10) 

where b is a constant. With the change of variable 
through 

oc == (leBDt(y + p.,/eB) , (II) 

Eq. (9) reduces to 

- - + oc
2 + - H = ° ( 

d2 b ) 
doc2 leBI 

(12) 

with 
k=2n+1. 

(23) 

(24) 

Equations (21) and (24) give the quantized energy 
levels 

E=E '1)%.'P%.7I 

= (2m)-1[leBI (2n + 1) + p; + p~ 
- (mE - Bp",)2/B2]. (25) 
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Therefore, q; = q;1J
z

.1J .... , given by (22), (23), and (20). 
From the form of the (kinetic) energy in (25), it 

seems that we may make E as low as we wish by 
increasing the electric field strength E alone. This is 
not the case, because, when the E term dominates, 
lEI becomes (mI2)(EIB)2 and is comparable to the 
rest mass m, and at this point the applicability of the 
Schrodinger equation breaks down. This restriction 
of E « B applies also for the classical motions.1 

III. RELATIVISTIC MOTION 

The Klein-Gordon equation in the presence of 
external fields is 

[(p - eA)2 + m2]q; = (Po - eA 0)2 q;. 

A. Ell B19 

In the gauge of (4), Eq. (26) reduces to 

[Q(y) + R(z) + m2]F(y)G(z) = 0, 

where Q(y) is defined by (6), 

R(z) == p~ - (E + eEz)2 
and 

q; = exp [i(pzX - Et)]F(y)G(z). 

Equation (27) is equivalent to 

[Q(y) + s]F(y) = 0, 

[R(z) + m2 - s]G(z) = 0, 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

where s is a constant. (30) is the same as (9); hence 

F(y) = exp (-toc2)H .. (oc), (32) 

with oc defined by (11), and 

s = -leBI (2n + I). (33) 

After the change of variable 

This is the Kummer equation,20 and there are two 
linear independent solutions given by 

N=gl(i:~e~IS,o), j=1,2, (39) 

where 

g1(b,7') == F(Hl + b), t, 7'), (40) 

g2(b,7') == 7'tF(l(l + b) + t. t 7'), (41) 

and F is the confluent hypergeometric function. 20 

Collecting (29), (32), (37), and (39), we have 

q;1J •. ~." = exp [i(p",x - Et)] exp (-toc2)H .. (oc) 

X exp Wl)g;(i rn
2 

- s , _iy2) , (42) 
leEI 

with ct, y, and s given by (11), (34), and (33), respec­
tively. As in the nonrelativistic case, the energy levels 
are not quantized. Comparing (17) and (42), we see 
that the relativistic effect manifests itself only in the 
motion in the z direction where the confluent hyper­
geometric function goes into the Airy function in the 
nonrelativistic limit. This is expected on physical 
grounds. However, in making the comparison, one 
is reminded that E in (42) is the total energy of the 
particle while the E in (17) is the kinetic energy only. 

B. E 1.. B21 

In the gauge of (18), writing the wavefunction in 
the form of 

r = exp [i(p",x - Et + P.z)]P(y), 

we see that (26) reduces to 

T(y)P(y) = 0, 
where 

T(y) == p~ - e2(E2 - B2)y2_ 2eY(EE - Bp",) 

(43) 

(44) 

y == (leEl)t(z + EleE), 

Eq. (31) becomes 
(34) + p! + P: + rn2 

_ E2. (45) 

( 
d2 2 m2 

- s) -+y --- G=O. 
dy2 leEI 

(35) 

Expressed in the new variable 

with 
(36) 

(36) becomes 
G(z) == exp (- 0/2)N(0), (37) 

(o!f.. + (t _ O)!!.- _ 1 + i(rn 2 
- s)/leEI)N = 0. 

d02 dO 4 
(38) 

Case 1 (E = B): In this case T(y) is independent of 
y if, in addition, E = p",. We then have free motion 
for the particle. However, this is unphysical since E, 

the total energy, is always greater than the momentum 
unless rn = 0. Therefore, (45) is linear in y and (44) 
then has the same form as (10). The solution in this 
case is easily found to be 

P(y) = <I>[1I1(y + vlu)], 

where II and v are constants defined by 

II == 2eB(p", - E), 

V == p~ + p~ + rn 2 
_ E2. 

(46) 

(47) 

(48) 
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Case 2 (E ~ B): With 

rJ == +(E2 - B2)t, 

~ == (lei rJ)![Y - (Bpx - €E)j(er/2
)], 

(44) becomes 

(:;2 + e - a) P = 0, 

where 

(49) 

(50) 

(51) 

a == [p! + p; + m2 
- €2 + (Bp", - €E)2jrJ2]j(lel rJ). 

(52) 

Equation (51) is the same as (35) in form, and we have 
two independent.solutions given by 

P = exp W~2)gj(ia, _i~2), j = 1,2, (53) 

while (41) and (53) together give 

(I +ia)+2= -4m, m=0,1,2,···. (61) 

On the other hand, for T real and n nonnegative 
integers, we have22 

Therefore, when E < B, (53) becomes 

or 

(62) 

(64) 

(65) 

by means of (40), (41), (53), and (60)-(63). Equations 
wheregj,j = 1,2, are defined by (40) and (41). This (60), (61), (64), and (65) can be condensed into 
completes the derivation. The interrelation of the 
various solutions will be discussed in the next section. P R> exp (- t 2/2)HnW), n = 0, 1, .. " (66) 

IV. DISCUSSIONS 

Case 2 of Sec. IIlB can be further subdivided into 
the case of E > B and the case of E < B. It is the 
latter case that connects the relativistic solutions of 
(43) and (53) to the nonrelativistic solutions of (22) 
and (23). In fact, when E < B, rJ of (49) becomes 
purely imaginary. Let us define 

rJ' == -irJ 

= +(B2 _ E2)! 

and 

(54) 

(55) 

The variable _i~2 of g; in (53) when written in terms 
of these new variables becomes t 2, which is real under 
the condition E < B. In general, the confluent 
hypergeometric function F has the asymptotic 
expansion22 

F( b) -i1la reb) -a + reb) a-b t ~" 1. a, ,T R> e T - T e, . // reb - a) rea) 
(57) 

For T real, in order to get rid of the exponentially 
increasing term, we must have 

Ijr(a) = O. (58) 

Since r functions have poles at nonpositive integers 
only, (58) implies that 

a = -n, n = 0, 1, 2, . . . . (59) 

In our case, combining (40) and (53), we have 

and 
1 + ia = -2n. (67) 

(67) when combined with (52) and (54) gives 

(€ - EPxIB)2 = (rJ'jB)2[(2n + 1) lei rJ' + P; + m2
]. 

(68) 

Therefore, the energy levels are quantized. It is easy 
to see that (68) reduces to the correct form when E 
tends to zero, i.e., the case of a pure magnetic field. 
Furthermore, we observe that the results of (66) and 
(68) can indeed be obtained directly by solving the 
original differential equation (44). 

The transition to the nonrelativistic limit ~s effected 
by letting € -- m and rJ' -- Bin (56), which is suggested 
by the discussion at the end of Sec. II. We then have 
~/ tending to p of (20), and (66) tends to (23). Under 
the same limits, (68) becomes 

€ = m + (2m)-1[(2n + 1) lei B + p;] + Ep",/B, (69) 

the same as the nonrelativistic result (25). 
That the relativistic motion in the neighborhood of 

E = B for E 1.. B is described by different functions 
depending on the relative strengths of E and B may 
lead one to suspect that there is some physical dis­
continuity at the point E = B. The answer to this 
question is probably negative because we expect 
the solution P to the differential equation, 

(:;2 + V(y»)P(Y) = 0, (70) 

1 + ia = -4n, n = 0, 1, 2, ... , (60) to vary continuously as V(y) changes smoothly from a 
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quadratic to a linear function in y. This is also sug­
gested by the discussion following (42). We note that 
this problem also has its counterpart in the classical 
motions. 1 

As for the nonrelativistic motions in orthogonal 
fields, we note that the new feature introduced by 
the presence of the electric field when compared to 
the pure magnetic field case is that the degeneracy in 
p", is now broken and gives an added constant of 
Ep.jB - (m/2)(E/B)2 to the energy. Therefore, for 
the special case of p", = 0, the electric field amounts 
to only a uniform shift of the energy levels. 

The Klein-Gordon equation has been shown to be 
capable of a single-particle interpretation with the use 
of the indefinite metric by Feshbach and Villars23 in 
the spirit of the work of Pauli and Weisskopf.24 
Recently, Marx25 has given a probabilistic interpreta­
tion to the scattering processes of a Klein-Gordon 
particle subjected to external electromagnetic fields 
within the above framework. Along this line, pertur­
bation calculations were suggested and carried out 
to the lowest order for the pair altnihilation process. 26 

An interesting question remains on the possibility of 
comparing the perturbation series with some exact 
calculations in order to test the convergence of the 
series and the probabilistic interpretation itself. The 
exact solutions presented in the preceding section 
when properly handled may be able to throw light on 
this subject. This is currently under investigation. 
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Several examples illustrate the utility of mathematical models which differ in their topological proper­
ties from the "real" systems they describe. The examples are the Aharonov-Bohm effect, the periodic 
lattice, and scattering off an obstacle. By going to the approximate topology, the Hamiltonian loses its 
essential self-adjointness, but the relation of the approximate to the exact topology leads to a convenient 
classification of its extensions. 

INTRODUCTION 

In discussions of the Aharonov-Bohm effect,1.2 
one sometimes invokes the concept of multiple 
connectedness, but then if this idea is pushed too hard, 
one backs off and drops some of its consequences 
while attempting to retain others. Thus, in Ref. 2 
(p. 1514) the solenoid and its effects are adiabatically 
eliminated to prevent use of the license provided by 
multiple connectedness to employ multivalued wave­
functions. 

The purpose of this article is to provide a con­
sistent framework for such procedures. But even 
more, we show that the license for multivaluedness 
can and sometimes should be used. This will occur in 
physical problems where the mathematical model of 
the coordinate space is topologically different from 
what we consider to be the "real" space. Nevertheless, 
by taking the model topology seriously we shall obtain 
well-defined and physically meaningful results. 

In advance of our examples, we state briefly the 
mathematical principle that is operating. On the 
approximate coordinate space the Hamiltonian is 
not essentially self-adjoint3 ; it does possess this 
property, though, on a covering space. The propaga­
tor on the covering space is therefore well defined. 
On the original space, the propagator is some lin;;:ar 
combination of covering space propagators with the 
coefficients in this linear combination selecting some 
self-adjoint extension of the original Hamiltonian. 
How generally this procedure can be applied to a 
characterization of the extensions of operators which 
are not essentially self-adjoint would seem to be an 
interesting mathematical question raised by this 
article. 

As examples, we shall discuss the Aharonov-Bohm 
effect, the periodic lattice (in a solid, say), and scatter­
ing off an opaque body. Also included is a case where 
approximating the topology would lead to incorrect 
conclusions. 

I. THE AHARONOV-BOHM EFFECT 

The Aharonov-Bohm effect can be idealized as 
follows (Fig. I): Electrons are emitted from the source 
and those that ultimately arrive at the detector take 
either path 0 or path 1 through field-free regions 
around the solenoid.' The wavefunction, when there 
is no field in the solenoid, is mainly composed of two 
pieces 1Jl~O)(x) and wiO) (x) , corresponding to the two 
paths. When the field is on, although B ¥= 0 only 
inside the solenoid, the vector potential A(x) is 
nonzero outside. The solution to Schrodinger's equa­
tion in the presence of A is' 

1jJ{x) = 1Jlo(x) + 1JlI(X) , (1) 

tp;(x) = 1Jl~O)(x) exp {ie {" .A. dS}, j = 0, 1. (2) 
JPath, 

Because the integral of A along different paths is 
different, interference patterns are created which 
depend on A and, in particular, on the integral of A 
around the closed circuit which is just the total 
magnetic flux. 

We now analyze this in terms of a multiply con­
nected space.5 The mathematical object we wish to 
compute is the Green's function for some given time 
evaluated at the source and the detector. For multiply 
connected spaces, this can be obtained' most con­
veniently by going to the universal covering space, 
performing the usual path integral in this simply 
connected space to each of the pre-images (under the 
covering projection) of the detector, and summing 
the contributions. If we drop the z direction (along 
the axis of the solenoid), the space of interest M 
is the plane minus a disk. The covering space of M, 
denoted M*, is essentially the same as the Riemann 
surface for the logarithm. The Green's function is 
therefore' 

<X) 

G(X2' t; Xl' 0) = I ein~Gn(X2' t2; Xl, 0), (3) 
n=-oo 

304 
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&-DETECTOR 

IMPENETRABLE 
SOLENOID 

FlO. 1. Idealized Aharonov-Bohm experiment. 

where Gn is the sum over paths (of eiS11i ; see, e.g., 
Ref. 6) which loop around the solenoid n times 
(negative n for clockwise loops). In Fig. 2 are shown 
some of the paths in M, and in Fig. 3 the correspond­
ing paths in M*. From Fig. 3 it is evident that a better 
notation for Gn(X2, 12; Xl> 0) would be GC(X~n), 12; 
Xl, 0), where x~n) is the nth pre-image of X 2 under the 
coverihg projection and GC is a single Green's function 
defined on M*. Of course, there are many choices for 
Xl also, but one has been picked for definiteness. 

The phases m1. are selected so that rotation of one of 
the end points through 21T changes G by an x-independ­
ent phase factor, which is unobservable. Since M is 
multiply connected, we cannot use the requirement of 
single valuedness to dispose of ex. 

Forget for the moment about magnetic fields, and 
consider the physical requirements for a Green's 
function describing a particle which is free except for 
an "impenetrable" cylinder. Since the impenetrability 
is an idealization, we cannot tolerate multivalued 
wavefunctions (the space is, in principle, simply 
connected), and it is necessary to set ex = O. 

With a magnetic field in the solenoid, but not 
outside, there is a nonzero vector potential in M. 
Now unless one specifies a definite path and does not 
move the end point around too much (like all around 
the solenoid), the trick used in Eq. (2) (i.e., different 
gauge transformations for different semiclassical paths) 
cannot work. However, by remaining in M*, this' 
trick will always work since it is merely a gauge 
transformation. That is, since B = 0 in M*, A = V'Q 
for some function Q. Now Q(x) can be taken to be the 

FIG. 2. Paths 
from source to 
detector. ~ 

XI -::; 
n=1 

FIG. 3. Paths in the 
covering space. 

integral SA. ds from some fiducial point to x, and is 
unique because M* is simply connected. If Gg is the 
Green's function in M* for A = 0, the Green's 
function for A = V'Q :F: 0 is 

Gi = Gg(;2, t; ;1,0) exp {ie[Q(2) - Q(;1)]}' 

~1'~2EM (4) 

[-Q(1) is added for symmetry]. 
The presence of exp (ieQ) does not affect the 

periodicity arguments offered previously, and, by 
taking once more ex = 0 to be a physically imposed 
requirement, the proper Green's function is obtained. 

The formulation of the foregoing procedure from 
the standpoint of the space M alone (as opposed to 
looking inside the solenoid) is also possible and, in 
fact, is the whole point of the present paper. On M 
a Hamiltonian (with or without A) is given, but 
because M is multiply connected, the Hamiltonian 
by itself does not serve to define the dynamics. That 
the representation of the Hamiltonian as a differential 
or multiplicative operator may be inadequate has 
long been emphasized by mathematicians, and indeed, 
with particular reference to physics, the essential self­
adjointness of a Hamiltonian is an important question. 
In a 1966 lecture,7 Wightman discussed the physical 
significance of this property. For example, for a free 
particle in a box the Hamiltonian is not specified as 
an operator until the boundary conditions (e.g., 
vanishing at edges) are given. These boundary con­
ditions are thus dynamical data and the physics of 
the situation is determined by and determines them. 
Our space M is quite similar to the box and the 
quantity which is not determined by the Hamiltonian 
(in its representation as a differential and multiplica­
tive operator) is the parameter IX. Our argument 
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concerning ex. involved looking more closely at the 
hole in M; that is, additional physical information 
was marshalled to complete the specification of the 
problem. 

It is possible to recast the problem so that the free­
dom offered by the phase ex. does not remain unex­
ploited. This formulation may also have some bearing 
on the role of potentials in quantum mechanics (which 
was the main object of the Aharanov-Bohm investi­
gation) since the potentials are eliminated. 

The function 0 introduced above, satisfies 

O(x(n+1) = O(x(n) + F, (5) 
where 

(6) 

is independent of x and n. On M* , the polar angle in M 
likewise becomes a single-valued function and satisfies 
(with obvious notation) 

IP(x(nH ) = IP(x(n) + 27T. (7) 

IP can be used to define a function OJ == 0 - FIP/27T 
which is periodic in M* and hence well defined in M. 

In general, gauge transformations on M* affect the 
physics on M. The function OJ, however, can be 
transformed away because it is single valued on M 
(and surrounds no flux lines anywhere). Writing 

0= (0 - FIP/27T) + Frp/27T = OJ + FIP/27T, (8) 

we see that there is no point in considering vector 
potentials other than V FIP/27T. Letting 

<I>(x(n) == IP(x(n) - 2117T, 

we can write the Green's function on M, 

G(X2, t; Xl' 0) = exp {ieF /27T[<I>(X2) - <I>(XI)]} 
00 

(9) 

X ! exp(ieFn)Gn(X2 ,t;xl ,0). (10) 
n=-CX) 

Evidentally, for interference experiments of the kind 
discussed by Aharonov and Bohm, the phase factor 
outside the sum in Eq. (10) plays no role. This suggests 
that it can be eliminated altogether. 

The Green's function of Eq. (10) is single valued 
and propagates single-valued functions on M forward 
in time: 

'If'(X2, t) = IMdXIG(X2' t; Xl, O)'If'(XI , 0). (11) 

All quantities in this equation can be redefined so 
that they are all multivalued in the same way and the 
equation continues to hold. Let 

'If'new{x, t) = exp [( -ieF/27T)<I>(X)]'If'new(x, t), 

Gnew = exp {-ieF/27T[<I>(X2) - <I>(XI)]}Gold ' (12) 

The new quantities have the property 

f(x+) = exp (-ieF)f(x-), (l3) 

where f denotes 'If'new or Gnew and x+ and x- are the 
same point in physical space, but on opposite sides of 
the cut which runs through M from the solenoid to 
00. (This could be better stated in terms of limits, 
but the meaning is clear.) The result of these redefini­
tions is a multivalued wavefunction on a multiply 
connected space being propagated by a multivalued 
Green's function. The multivaluedness depends on a 
single parameter F. There need be no vector potential 
in M, and the physical effects of the solenoid are all 
included in this parameter F. 

Thus, because the space is multiply connected, the 
Hamiltonian is not essentially self· adjoint and admits 
a one-parameter family of extensions. Extend­
ing the Hamiltonian means putting in new phys­
ical information. The information in this case 
involves a region outside M, namely the solenoid, 
and the particular quantity of interest is F = S B . do, 
an integral over the cross section of the solenoid. 

Our purpose in the foregoing discussion was a 
demonstration of the idea of approximate topology 
and of its relation to lack of essential self·adjointness, 
but we cannot leave unnoticed the fact that the 
physical consequences of the Aharonov-Bohm effect 
have been obtained without the use of an electro­
magnetic potential. We exclude the electron from the 
solenoid, create an ambiguity, and look to physical 
quantities associated with the solenoid (total flux) 
to resolve this ambiguity. Aharonov and Bohm also 
exclude the electron from the solenoid but retain a 
vector potential which "remembers" what is going on 
inside. It seems fair to say that these are just two 
different ways to do quantum mechanics. 

The problem of two (or more) solenoids leads, in 
our formalism, to an amusing situation. The funda­
mental (homotopy) group of two nonintersecting sole­
noids is the same as that of the figure eight and is not 
commutative. But each homotopy class has associated 
with it a certain phase factor in the Green's function, 
and it follows from the path integral representation 
that this factor is a I-dimensional unitary representa­
tion of the fundamental group. The solution of the 
physical problem therefore involves a commutative 
representation of a noncommutative group. 

II. ELECTRON IN A LATTICE 

This example is an application of the idea of 
approximate topology to solid-state physics,B.9 and 
gives some additional perspective to some of the 
current work in this area. By considering cells of a 
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lattice to be identical, calculations can be confined 
to a single cell. However, since this cell is now con­
sidered "all" cells, opposite sides of the cell are 
identified with one another and the space of interest 
(say, M) is topologically a 3-dimensional torus. The 
fundamental group of M is Z3, the additive group of 
triples of integers, and the universal covering space is 
R3 which in a way brings us back to the original solid. 
The unitary representations of za [i.e., the phase 
factors appearing in the Green's function, as in 
Eq. (3)] are labeled by triples of real numbers, con­
veniently gathered into a 3-vector k. By noticing that, 
as in Eq. (13) above, k appears in the boundary con­
ditions on the wavefunctions, 

tp(; + R) = exp (ik • R)tp(;) (14) 

(where ; and I; + R are on the faces of the cell, 
separated by the lattice vector R), the physical mean­
ing of k is immediately identified: It is the momentum 
label for the Bloch functions. 

Once again, there is a Hamiltonian defined on a 
multiply connected space M, and it is not essentially 
self-adjoint. The various extensions are labeled by 
parameters with physical meaning which influence 
the dynamics of the system. 

There are several ways in which perfect periodicity 
of the lattice is only an approximate description of 
nature. The solid is at some finite temperature, there 
are lattice defects, it is of finite size, one-electron 
theory itself is a rather narrow framework, etc. How 
do these physical features dictate the nature of the 
extended Hamiltonians and the way in which they 
are used? 

An electron in a real solid cannot exist as a perfect 
Bloch wave, for otherwise its wavefunction would 
extend through all space. This leads to a conclusion 
which may be greeted with some surprise. We do not 
extend the Hamiltonian once and for all, but rather 
superpositions of the eigenfunctions of different 
extensions of the Hamiltonian combine to form the 
physical state. Furthermore, if we are given some 
initial wavefunction in the cell (M), there is no 
unique combination (superposition) of Bloch func­
tions to which it corresponds. (Proof: Consider a func­
tion vanishing on the surfaces of the cell.) Thus, if 
one wishes to propagate a state in M, it is not enough 
to give some initial tp(x) , but rather for each k he 
must specify tpk(X) and propagate with its particular 
extension of the Hamiltonian (or with the Green's 
function Gk of Ref. 8). If, instead of the notation 
tpk(X), we were to write C(t, q), it would become 
apparent that we have made the connection with 
Zak's kq representation10 indicated in Ref. 8. 

The handling of some of the defects within the 
perfect periodicity model takes the form of a dynamics 
in k. Besides the need for superpositions, there will be 
transitions from one value of k to another. Some 
aspects of this were treated in Ref. 8 in connection 
with external electromagnetic fields; for example, a 
constant uniform electric fi~ld causes k -->- k + eEl. 

Uniform electric and magnetic fields may be more 
easily adaptable to the perfect lattice model than other 
kinds of defects, since for them it is only the potentials 
which are different in different cells, while the fields 
are the same. 

III. SCATTERING FROM AN OBSTACLE 

A final example of a model of a physical system 
with a topology different from the "real" system may 
be of interest, although it is different in spirit from 
those already discussed. Buslaevll has given a path 
integral derivation of the short-time or long-wave­
length limit of the Green's function for diffraction by 
a smooth obstacle. Rather than consider separately 
Dirichlet or Neumann boundary conditions at the 
surface of the obstacle, he employs the following 
construction: Call the accessible subset of R3, d. 
The boundary of d is called 1 and is assumed smooth. 
The complement of d is the obstacle, assumed to be 
convex. Let D be a two-sheeted domain, consisting of 
two copies of d joined together along I. D covers d, 
and Green's functions in d are computed from those 
in D by adding those corresponding to the given 
points in d. Depending on the relative sign in this 
combination, Dirichlet or Neumann boundary con­
ditions are obtained. A more elaborate version of this 
method is also indicated on p. 74 of Ref. 11. We 
distinguish this technique from the previous examples, 
however, because d is simply connected. Nevertheless, 
the model serves Buslaev's purpose very well, and 
the physical boundary conditions once again are 
expressed in the way the Green's function on d is built 
from that on D. 

IV. THE TOP 

Finally, there are situations where an approximate 
topology cannot be used. This occurs when a physical 
system is, in principle, multiply connected, and a 
description of it in terms of a simply connected space 
will eliminate physical states known to be present. 
For example, a model of a particle with intrinsic spin 
is the top, whose coordinates can be taken to be the 
group manifold of the group SO(3).6.12 This space is 
multiply connected, and the model is appropriate for 
particles of half-integral spin. However, if one con­
siders this top to be the limit of n tightly bound 
spinless particles, the coordinate space is R3n ,which is 
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simply connected. The n particle model of the top can 
therefore never exhibit half-integral angular momen­
tum. 
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When general relativity is examined from the point of view of algebraic topology. it is found that the 
theory exhibits conserved particlelike structures. The number of such particles associated with a given 
metric is determined by the homotopy class of the metric. This paper is concerned with showing that if 
the theory is quantized. then the quantum mechanical states corresponding to I-particle systems in the 
unquantized theory may have properties similar to fermions. In particular, it is proved that it is possible 
for wavefunctionals to exist which are double-valued under 21T rotation. 

1. INTRODUCTION 

A number of studies1- s have been made of field 
theories which possess conserved particlelike struc­
tures called "kinks." Such theories are said to "admit 
kinks." The fields are classical and so single-valued 
under the action of the rotation group. The aim of 
these studies is to examine the possibility that when 
theories of this type are quantized, the quantum 
mechanical states corresponding to I-kink classical 
field configurations are, in fact, fermion states. 

An example of a theory that admits kinks is the 
nonlinear theory of mesons and baryons suggested by 
Skyrme.1 This involves mappings cp from 3-dimen~ 

sional space R3 into the 3-sphere S3: 

cp:R3 _ sa. 

S3 can be param~trized by four real variables (4)1,4>2' 
4>3' 4>4) subject to the restriction 

4 

! 4>~ = 1. 
;=1 

To prevent the escape of interesting structures at 
infinity, we only consider mappings cp which satisfy 
the boundary condition 

cp(x) - (0,0,0, 1) as \x\- 00, 

where x is any point in R3 and (0, 0, 0, 1) is a fixed 
point in S3. Among the CPi there are three independent 
fields that may be used to represent the three 77-

meson fields. The number of kinks present equals the 
degree of the mapping f{!. This can take on any 
integer value, positive or negative, and it is hoped 
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simply connected. The n particle model of the top can 
therefore never exhibit half-integral angular momen­
tum. 
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theories which possess conserved particlelike struc­
tures called "kinks." Such theories are said to "admit 
kinks." The fields are classical and so single-valued 
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meson fields. The number of kinks present equals the 
degree of the mapping f{!. This can take on any 
integer value, positive or negative, and it is hoped 
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that a kink may be interpreted as a baryon. (This 
theory has a simple l-dimensional analog involving 
mappings from the real line R1 into the circle S1. A 
kink may then be pictured intuitively as a 27T twist in 
an infinitely long strip.6.6) 

A more complicated example is that of general 
relativity. Here the fields are represented by the metric 
tensor. At a particular instant of time, we may regard 
this as a mapping g from Ra into the set of 4 x 4 real 
symmetric matrices of signature 1, which we denote 
bySu: 

g:R3_SU ' 

It is again convenient to impose boundary conditions. 
We shall only consider mappings that satisfy 

g(x) - 14,1 as Ixl - 00, 

where 14.1 is the matrix diag (1, 1, 1, -1). 
Since S •. 1 is a manifold of higher dimension than 

RS, the usual concept of degree does not apply to the 
mappings g. However, the idea of the degree of a 
mapping can be generalized by introducing the more 
powerful techniques of algebraic topology, and a 
mapping can be specified by the homotopy class to 
which it belongs. Mappings belong to the same 
homotopy class if and only if they are continuously 
deformable into each other (homotopic). The homo­
topy classes of many manifolds (including S4.l' as we 
shall see) can be labeled by a set of integers. 7 Since 
time is a continuous parameter, these labels can not 
change as time evolves, and so they may be inter­
preted as conserved particle numbers. 

Given a theory that admits kinks, we may investigate 
the I-kink mappings to determine whether or not 
they have fermionlike properties. A characteristic 
property of a many-fermion state is the double­
valued ness of the wavefunctional under exchange. 
For the type of theories considered in this paper, 
it has been showna.4 that double-valuedness under 
exchange implies the double-valued ness of the one­
kink wavefunctional under 27T rotation. If a theory is 
given which admits kinks and if it is also possible to 
define, on the space of I-kink fields, functionals which 
are double-valued under 27T rotation, then we shall 
say that the theory "admits spin." 

In a previous paper,s the author has proved that the 
nonlinear theory of Skyrme admits spin. On the basis 
of this, it is the purpose of the present paper to show 
that general relativity admits spin. 

2. THEORY OF KINKS 

Before beginning the investigation of the topologi­
cal structure of S4.l' it will be convenient to review 

the general theory of kinks due to Finkelstein.2-
5

•
8 

Let ° be a mapping from 3-dimensional Euclidean 
space R3 into a pathwise connected manifold Y, 

O:Ra_ Y, 

subject to the boundary condition 

O(x) - Yo as Ixl- 00. 

x is any point of RS, and Yo is a fixed point of Y. 
We shall let Q denote the set of all such mappings 0. 
The set of pathwise connected components Qa, Qb' 
Qc, ... of Q are called homotopy classes and form 
an Abelian group called the third homotopy group 
7Ta(Y). If 7Ts(Y) ¢ 0, we shall say that the theory 
admits kinks. The I-kink mappings belong to the 
generators of 7Ta(Y). 

Let Q1 denote a generator of 7Ta(Y). We shall 
investigate the conditions under which functionals may 
be defined on Q1 which are double-valued under 27T 
rotation. (The concept of "double-valuedness" can be 
formulated precisely by introducing the idea of 
universal covering space.2•9) If it is possible to define 
a double-valued functional on Q1' then the space of 
closed paths in Q1 must contain two different classes 
of paths such that all paths belonging to one class 
are deformable to a point (trivial paths), whereas all 
paths belonging to the other class are not deformable 
to a point (nontrivial paths). A path formed by 
describing a nontrivial path twice must be trivial. The 
quantity which contains the information about the 
path structure of Q1 is the first homotopy group 7T1(Q1)' 
This is the set of different classes of closed paths in Q1 
which pass through some fixed point 01 E Q1' A 
necessary and sufficient condition for the existence of 
double-valued functionals on Q1 is that the group 
7T1(Q1) have an element of order 2. The existence of 
double-valued functionals alone does not imply the 
existence of spin properties. One must show that the 
double-valuedness arises through following a path, 
starting and ending at some 01 E Q1' which corre­
sponds to rotating the system through 27T. When 
this happens, we shall follow the terminology of 
Finkelstein and say that the theory "admits spin." 
One need only prove the double-valued ness for a 
single member 0l of Q1 and a single 27T rotation. It 
then follows3 •4 that the double-valuedness holds for 
all members of Q1 and for all 27T rotations. 

7T1(Q1) is evaluated by using the isomorphism10 

7T1(Qa) ~ 7T1(Qb)' 

Let 00 denote the constant mapping which maps the 
whole of R3 into the fixed point Yo of Y. Mappings 
which are homotopic to 00 are called trivial. The 
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homotopy class of such mappings will be called Qo. 
Thus 

7T1(QO) can be obtained from 

This latter isomorphism results from the fact that the 
space of closed paths in Qo (beginning and ending at 
( 0) is homeomorphic to the space of mappings from 
R· into Y (with appropriate boundary conditions),u 

Another useful fact is that if Y is a topological 
group, then the different homotopy classes Qa are 
homeomorphic to each other. The reasoning is as 
follows. For any given 0, a E Q we may define a group 
operation * in Q by 

(O*a)(x) = O(x) 0 a(x), 

where 0 is the group operation in Y. Thus, Q is a 
topological group, and so its pathwise connected 
components, namely the Qa, must be homeomorphic 
to each other.12 Furthermore, it can be shown1a that 
if 0 E Qa and a E Qb' then O*a E Qa + Qb, where + 
is the group operation in 7Ta(Y). 

We are now in a position to discuss some examples. 
Consider the theory for which Y = S3. It is well known 
that 

where Z denotes the group of integers. Thus the 
theory admits kinks. The homotopy classes can be 
labeled by a single integer i, ... , Q-2, Q-1' Qo, Ql' 
Q2' . '. An example of a I-kink mapping is the 
stereographic projection defined by 

CPi = 2axij(r2 + a2), i = I, 2, 3, 

CP. = (r2 _ a2)j(r2 + a2), (1) 

where (CP1' CP2' CP3' CP.) E S3, x E R3, and r denotes 1",1. 
lt is also well known that 

where Z2 denotes the group of integers modulo 2. 
The question now arises as to whether or not this 
theory admits spin. This question has now been 
answered in the affirmative. 8 

With regard to general relativity, it was noted by 
Finkelstein and Misner5 that 

and 
(2) 

(3) 

In Sec. 4 of this paper it will be shown that general 
relativity admits spin. However, it will first be neces­
sary to review some of the topological properties of 
S4,l and to understand why Eqs. (2) and (3) are true. 

3. S4.l AS A BUNDLE SPACE 

Any real nonsingular matrix A can be written in 
one and only one way as a product, 

A = QS, 

where Q is a real orthogonal matrix and S is a sym­
metric positive-definite matrix. Let O. denote the 
group of 4 x 4 orthogonal matrices. It can be 
proved14 that A E S •. l if and only if Q E O. n S •. l and 
QS = SQ. Furthermore, if On is the group of n X n 
orthogonal matrices and Sn.k is the set of n X n real 
symmetric matrices of signature k, then it can be 
shown14 that On n Sn.k is homeomorphic to the set 
of k planes through the origin in Rn. This set is 
called the Grassmann manifold M n.k' M4,l is the set 
of straight lines through the origin in R4 and is com­
monly called real projective space P3. It is easy to 
show15 that p3 is homeomorphic to the 3-dimensional 
rotation group S03' Hence Q E S03 . 

We define the mapping 

p:S4.l- S03 
by 

p(QS) = Q. 

S4,l is a bundle space with S03 as base and p as pro­
jection. This is a special case of the more general 
result1• that Sn.k is a bundle space with M n .k as base. 
The fiber F, for the S •. l case, is defined to be p-1(I4,l)' 
This is the set of matrices of the form 

F= (~ ~), 
where B is a 3 X 3 symmetric positive-definite matrix 
and b is a negative real number. A space which is 
homeomorphic to a Euclidean space is called a cell. 
The space of definite matrices of a fixed order is a cell. 
It follows that F is the product of two cells and so is 
a cell. Hence, from the point of view of algebraic 
topology, F is trivial and 

7T n(F) = 0, all n. 

Because of this, one expects all of the interesting 
topological properties of S •. l to be displayed by S03' 

If X and Yare any two spaces, a mapping 

j:X-Y, 
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with an appropriate boundary condition, can be used 
to define a homomorphism 

1*:TTn(X) -TTn(Y). 

Given a mapping 0: Rn - X, then we see that the 
composition fO is a mapping from Rn into Y. We 
denote the homotopy class of 0 by [0] and that of 10 
by [10]; 1* is defined by 

1*[0] = [10]. 

In this way a homomorphism· p* can be defined 
between TT n(S4.1) and TT n(SOa). In fact, the homotopy 
groups TT n(S4,1), TT n(SOa), and TT n(F) are related by 
an exact sequencel6 •17 

d. 
_TTn_1(F)_'" , 

where i*, p* ' and d* denote homomorphisms. The 
triviality of the fiber implies 

i. p. d. 0_ TT n(S4,l) _ TT n(SOa) _ 0, 

and, because the sequence is exact, it follows17 that 
p* is an isomorphism. Hence 

TT n(S4.1) ~ TT n(SOa). 

The homotopy groups of SOa are well known. 
Apart from the n = 1 case, they are identical to the 
homotopy groups of the ~niversal covering group of 
SOa' This is sa (or SU2);TTa(SOa) is Z,and TTiSOa) is 
Z2' This proves Eqs. (2) and (3). Equation (2) indi­
cates that kinks exist in general relativity and that 
they are labeled by a single integer. Equation (3) means 
that it is reasonable to make further investigations to 
ascertain whether or not the theory admits spin. 

4. PROOF OF THE ADMISSION 
O}<' SPIN FOR S4.1 

Let QI(Y) denote the set of I-kink mappings 
corresponding to either of the cases Y = Sa, SOa, 
and S4.1' Let path [QI( Y)] be the set of closed paths 
in QI(Y) beginning and ending at some particular 
point in QI(Y) and path [Qo(Y)] be the set of closed 
paths in Qo(Y) beginning and ending at the constant 
mapping which takes the whole of Ra into a fixed point 
Yo of Y. Let M(R\ Y) denote the space of mappings 

1p:R4 _ Y, 

with the boundary condition 

1p(UI, U2' Ua, u4) - Yo as any Iuil- 00, 

where (UI' u2 , Ua, u4) is any point of R4. As mentioned 
before, M(R4, Y) is homeomorphic to path [Qo(Y)]. 

Thus we may construct homeomorphisms D and H: 

D:path [Qo(sa)] _ M(R4, sa), 

H:path [Qo(SOa)] - M(R4, SOa)' 

Because Sa and SOa are topological groups, Ql(sa) is 
homeomorphic to Qo(sa), and QI(SOa) is homeo­
morphic to Qo(SOa). Thus, it is possible to define 
homeomorphisms d and h: 

d:path [Ql(sa)] _ path [Qo(S3)], 

h: path [QI(SOa)] - path [Qo(SOa)]. 

Let c denote the usual covering mapping 

c:Sa_ SOa' 

A theorem quoted by Hu (Ref. 16, p. 89) states that 
every covering space is a bundle space with discrete 
fiber. Thus sa is a bundle space with SOa as the base 
and c as the projection. The fact that the fiber is 
discrete means that all its homotopy groups are zero. 
This situation is similar to the case of the fibering of 
S4.1 over SOa, and we may construct an exact sequence 
and show that the mapping 

c* : TT n(sa) - TT n(SOa) 

is an isomorphism. 
Suppose CPI E Ql(sa). Because c* is an isomorphism, 

this implies that the composition CCPI E Ql(SOa).18 
For example, the composition of the stereographic 
projection of Eq. (1) and the covering mapping c 
belongs to QI(SOa)' Let X be a closed path in Ql(sa) 
beginning and ending at CPl' X is a member of path 
[Ql(sa)]. cX is a closed path in Ql(SOa)' In this sense, 
c can be regarded as a mapping between two path 
spaces: 

On the other hand, if FE M(R4, sa), then cF E 

M(R4, SOa), and so c can also be regarded as a 
mapping between two mapping spaces: 

c: M(R4, sa) -+ M(R4, SOa). 

Because TT4(sa) = TT4(SOa) = Z2' there are only two 
classes of mappings belonging to M(R4, sa) and only 
two classes of mappings belonging to M(R4, SOa)' 
We may draw the following diagram. 

d D 
path [Ql(SS)] _ path [Qo(sa)] _ M(R4, sa) 

"t ct 
II H 

path [QI(SOa)] _ path [Qo(SOs)] _ M(R4, SOa) 

Let X E path [QI(sa)] be a 2TT rotation path. An 
example of such a path is obtained by making the 
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replacement 

in Eq. (1), where 

3 

Xi - Z Rij(s)xj 
1~1 

IIRij(s)11 = -sin 27TS cos 27TS 
(

COS 27TS sin 27TS O~) 

o 0 

and where S is the path parameter varying between 0 
and 1. Clearly, ex E path [Ql(S03)] is also a 27T rota­
tion path. Because the S3 theory admits spin, X is a 
nontrivial path. We shall show that ex is also non­
trivial. 

The fact that X is nontrivial and Dd is a homeo­
morphism implies that D dX is a nontrivial member of 
M(R4, S3). Because e* is an isomorphism, cD dX is a 
nontrivial member of M(R4, S03)' Since (Hh)-1 is a 
homeomorphism, (Hh)-leD dX is a nontrivial path 
belonging to path [Ql(S03)]' Because (Hh)-1 and Dd 
are homeomorphisms, the mappings e and (Hh)-leDd 
are homotopic, and so ex and (Hh)-leD dX are deform­
able into each other. The nontriviality of (Hh)-leD dX 
implies that ex is nontrivial. Since ex is a 27T rotation 
path, it follows that the S03 theory admits spin. 

Let us now consider S4,l and the subspace 0 4 ("\ 

S4.1 of S4.1' This subspace is homeomorphic to S03' 
Let 

be the composition of the stereographic projection of 
Eq. (1) and the covering mapping e which maps S3 
onto 0 4 ("\ S4.1 (or equivalently onto S03)' Consider 
the composition 

pgl:R3 - S03' 

As noted previously, pgl E Ql(S03)' Because p* is an 
isomorphism, gl E Ql(S4,l)' Thus an example of a 
I-kink mapping in general relativity is the composition 
of the stereographic projection with the usual two­
fold covering of S03 by S3. 

Since S4,1 is a bundle space with S03 as base, we 
may draw a diagram formally similar to the S3, S03 
case. 

path [Ql(S4,1)] ~ path [Qo(S4,1)] ~ M(R4, S4,1) 

~t ~t 
k' H 

path [Ql(S08)] -+ path [QO(S03)] -+ M(R4, S08) 

However, since Su is not a topological group, we can­
not assume that Ql(S4.1) is homeomorphic to Qc(S4,1)' 
We shall follow Rubinstein' ami define the mapping 
k as follows. Let X be a path belonging to path 
[Ql(S4,1)] so that, for a particular s, X(s) E Ql(S4,1)' 

Let g-1 be a member of Q-l(S4,1)' We may define a 
path 'fJ E path [Q0(S4.1)] by 

'fJ(S) = X(s) U g-I' (4) 

The symbol U represents the usual homotopy theory 
operation of joining two mappings. The homotopy 
classes ['fJ(s)], [X(s)], and [g-I] are related by 

['fJ(s)] = [X(s)] + [g-d, 

where + is the group operation for 7T3(S4.1)' Clearly, 
['fJ(s)] = QO(S4,1) , and so 'fJ E path [Qo(S4.1)]' It has 
been shown by Rubinstein4 that if X is a nontrivial 
(trivial) path, then 'fJ is also a nontrivial (trivial) path. 
Equation (4) defines a mapping k from path [Ql(S4,1)] 
into path [QO(S4.1)]' In a similar manner, we may 
define a mapping k': 

k and k' are not homeomorphisms. 
Consider the two mappings gl and pgl' (These are 

essentially the same mapping.) By applying a 27T 
rotation, gl and pgl give rise to two paths Xl and PXl' 
Xl E path [Ql(S4,1)] and PXI E path [Ql(S03)]. PXl 
is nontrivial because the S03 theory admits spin. We 
shall prove that Xl is also nontrivial. Consider the two 
mappings pKkXI and Hk'pXl' both belonging to 
M(R4, S03)' Both k and k' map nontrivial paths into 
nontrivial paths. Because PXl is nontrivial, it follows 
that Hk'pXl is nontrivial. However, the two mappings 
pKkXl and Hk'pXl are, in fact, the same mapping. 
Therefore, pKkXl is nontrivial. The triviality of pKkXI 
depends upon that of Xl' Hence, the path Xl is 
nontrivial. Since Xl is a 27T rotation path in Ql(S4,1), 
it follows that general relativity admits spin. 

5. A l-KINK MAPPING 

It is of interest to construct explicitly an example 
of a I-kink mapping in general relativity. Recalling 
that the composition of the stereo graphic projection 
and the covering mapping e is a I-kink mapping, 
let us first construct a mapping from S3 into 0, ("\ 
S4,1 which is topologically equivalent to e. Let G be a 
member of 0 4 ("\ Su' Therefore, G can be written 
in the form 

where P EO,. A simple way of defining a mapping 
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from S3 into 0 4 is to write P in the form 

Substituting this into the equation for G gives 

24>14>2 -24>14>3 

1 - 24>~ 24>24>3 

24>34>2 1 - 24>; 

-24>44>2 24>44>3 

This defines a mapping from S3 into 0 4 () Su. Call 
it c'. Any member (4)1' 4>2' 4>3' 4>4) E S3 determines G 
uniquely. Given any G E 0 4 () So' the diagonal 
elements determine any 4>i to within a sign. The off­
diagonal elements of G serve to correlate the signs of 
the 4>i so that (4)1' 4>2' 4>3' 4>4) is determined to within 
an over-all sign. Clearly, c' is topologically equivalent 
to the usual twofold covering mapping c from S3 into 
S03' The composition of c' with the stereographic 
projection of Eq. (1) then gives a mapping from R3 
into S4.l' which is a member of Q1(SU) and so a 
I-kink mapping. 

6. SUMMARY 

The aim of this paper has been to explain how 
general relativity can admit kinks and how the 1-
kink states can have fermionlike properties. The 
knowledge that the S3 theory admits spin and that S3 
is a bundle space with S03 as base was used to ~how 
that the S03 theory admits spin. The fact that Su is a 
bundle space with S03 as base then led to the con­
clusion that general relativity admits spin. An example 

of a i-kink mapping in general relativity was con­
structed. Whether or not such objects play any role 
in nature is an open question. 
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A simple example of the application of the semidirect product of groups is presented. 

The asymptotic symmetry group in general rela­
tivity, the BMS group, was introduced by Sachs.l We 
show that this group, as well as the Poincare group 
and the invariance group of electrodynamics, are 
examples of the semi direct product applied to certain 
group representations. 2 

Let G be a group and Van Abelian group. Suppose 
we are given in addition an action of G on V. That is 
to say, for every g E G we have an automorphism Ag 
on V such that Ag, 0 Ag. = Au,g• and (Ag)-I = Ag_I . 
The semidirect product V (1) G of V and G is then 
defined as follows. The underlying set of V (1) G is 
the product of sets V x G. The group operation is 
defined by3 

(gl' Vl)(g2, V2) = (glg2, VI + A g, (v2)· 

In particular, if V is the vector space of a representa­
tion of G, then G acts on V as required. With each 
representation of G we thus associate a new group. 
We can consider Vas an Abelian normal subgroup of 
V (1) G: G is the factor group. 

We discuss three applications of these remarks. 
Let G = C, the (homogeneous) Lorentz group. 

Suppose first that we choose for V the vector 
representation W of C, i.e., the D(H) representation. 
Then C (1) W is the inhomogeneous Lorentz group (1'. 

Next, consider C as the group of conformal map­
pings on the Riemann sphere S. Let X be the vector 
space of smooth, real-valued functions on S. Define 
the action of C on X as follows: If LEe, fE X, 

Lf(p) = AJ[L(p)], where pES and K is the conformal 
factor associated with the action of L on S. (This is 
the infinite-dimensional representation, sometimes 
called the closest relative representation, associated 
with D(H).4) Then C (1) X is the BMS group.l 
(Similarly, one obtains "generalizations" of the BMS 
group.) 

Finally, let G = (1', the Poincare group, considered 
as acting on Minkowski space M. Let Y be the 
vector space of smooth, real-valued functions on 
Minkowski space. If P E (I' and fE Y, let Pf(q) = 
f(q), q EM. Then Y is a representation of (1', and 
(I' (1) Y is the in variance group of electrodynamics. 
The invariance group of linearized general relativity 
is obtained in a similar way (choosing for Y the 
vector fields on Minkowski space). 
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